Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 17, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 17, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 17, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 17, 2025

      Microsoft’s allegiance isn’t to OpenAI’s pricey models — Satya Nadella’s focus is selling any AI customers want for maximum profits

      May 17, 2025

      If you think you can do better than Xbox or PlayStation in the Console Wars, you may just want to try out this card game

      May 17, 2025

      Surviving a 10 year stint in dev hell, this retro-styled hack n’ slash has finally arrived on Xbox

      May 17, 2025

      Save $400 on the best Samsung TVs, laptops, tablets, and more when you sign up for Verizon 5G Home or Home Internet

      May 17, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      NodeSource N|Solid Runtime Release – May 2025: Performance, Stability & the Final Update for v18

      May 17, 2025
      Recent

      NodeSource N|Solid Runtime Release – May 2025: Performance, Stability & the Final Update for v18

      May 17, 2025

      Big Changes at Meteor Software: Our Next Chapter

      May 17, 2025

      Apps in Generative AI – Transforming the Digital Experience

      May 17, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft’s allegiance isn’t to OpenAI’s pricey models — Satya Nadella’s focus is selling any AI customers want for maximum profits

      May 17, 2025
      Recent

      Microsoft’s allegiance isn’t to OpenAI’s pricey models — Satya Nadella’s focus is selling any AI customers want for maximum profits

      May 17, 2025

      If you think you can do better than Xbox or PlayStation in the Console Wars, you may just want to try out this card game

      May 17, 2025

      Surviving a 10 year stint in dev hell, this retro-styled hack n’ slash has finally arrived on Xbox

      May 17, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»JPMorgan Chase Researchers Propose JPEC: A Novel Graph Neural Network that Outperforms Expert’s Predictions on Tasks of Competitor Retrieval

    JPMorgan Chase Researchers Propose JPEC: A Novel Graph Neural Network that Outperforms Expert’s Predictions on Tasks of Competitor Retrieval

    November 13, 2024

    Knowledge graphs are finding their way into financial practices, especially as powerful tools for competitor retrieval tasks. Graph’s ability to organize and analyze complex data effectively allows them to gain insights from competitive clues and reveal meaningful connections between companies. They thus substitute manual data collection and analysis methods with greater scalability and applicability scope. The performance of knowledge graphs could be further enhanced by combining them with graph embedding techniques. However, in financial tasks, current methods face many challenges, such as directed and undirected relationships, attributed nodes, and minimal annotated competitor connections. Thus, the current SOTA embedding methods are limited in finance due to the overwhelmingly complex structure of practical graphs. This article discusses a recent study that aims to improve competitor retrieval with the help of graph neural networks.

    JPMorgan Chase researchers propose JPMorgan Proximity Embedding for Competitor Detection, a Novel Graph Neural Network for Competitor Retrieval in Financial Knowledge Graphs. JPEC utilizes graph neural networks to learn from first and second-order node proximity for effective competitor pattern capture. In financial graphs, competitor edges are generally sparse but provide essential learnings. Here, first-order proximity comes into the picture, which characterizes local connections and is used as supervised information that constrains the similarity of latent representations between pairs of competitors. The second-order proximity is used to learn graph structure and attributes simultaneously with the help of GCN Autoencoders. This is interesting because, conventionally, GCNs are designed for undirected graphs. Authors exploit its propagation function to exploit GCN in directed graph settings.

    Additionally, the model uses a decoder to make up for the sparsity of the competitor’s edges, as mentioned earlier. The decoder enhances the model’s ability to extract information from the supply chain graph. The loss function for the second-order proximity is to minimize the difference between the original node feature vectors and the reconstructed ones.

    This model was evaluated on a dataset prepared from a large-scale financial knowledge graph that included various financial entities such as companies, investors, and bankers, along with their relationships. Two datasets were produced from A) the Regular Test Dataset and B) the Zero-Shot Test Dataset; for Zero-Shot Test Data,  authors chose a subset of the graph and extracted COMPETE_WITH edges around them. They then removed all COMPETE_WITH connections between these nodes and the rest of the graph to ensure these nodes are unseen in the training competitor data. For the other category, the authors randomly sampled the remaining dataset. In contrast to the zero-shot test dataset, regular test data retained all nodes but randomly retained some COM PETE_WITH edges from the graph.  While evaluating, the authors compared models’ performances with three ranking metrics -Hits, MRR or Mean Reciprocal Rank, and Mean Average Precision (MAP). The results of this analysis established that most machine learning-based methods outperformed human queries in competitor detection on regular testing data. For the Zero-shot dataset, structure-based embedding methods underperformed with problems of cold start, whereas attributed embedding methods performed well.

    To sum up, JPEC utilized two orders of node proximity to enhance financial knowledge graphs. This method outperformed most state-of-the-art finance experts, who manually predicted competitors of a node.JPEC marks a significant advancement in the field, demonstrating the potential of knowledge graphs to uncover valuable patterns within complex networks, particularly in practical business applications.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

    [Upcoming Live LinkedIn event] ‘One Platform, Multimodal Possibilities,’ where Encord CEO Eric Landau and Head of Product Engineering, Justin Sharps will talk how they are reinventing data development process to help teams build game-changing multimodal AI models, fast‘

    The post JPMorgan Chase Researchers Propose JPEC: A Novel Graph Neural Network that Outperforms Expert’s Predictions on Tasks of Competitor Retrieval appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleVoyage AI Introduces voyage-multimodal-3: A New State-of-the-Art for Multimodal Embedding Model that Improves Retrieval Accuracy by an Average of 19.63%
    Next Article Secure Service-to-Service Communication with Okta

    Related Posts

    Development

    February 2025 Baseline monthly digest

    May 17, 2025
    Development

    Learn A1 Level Spanish

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    400+ SAP NetWeaver Devices Vulnerable to 0-Day Attacks that Exploited in the Wild

    Security

    Mimic ransomware: what you need to know

    Development

    The Significance of Application Performance Monitoring for Businesses

    Development

    Useful Nmap Scripts for Ethical Hackers

    Development

    Highlights

    No cash, just exposure: Apple’s unique deal to bring ChatGPT to its platforms

    June 13, 2024

    Apple announced at WWDC that OpenAI’s ChatGPT is coming to iOS 18. But Apple isn’t…

    Kodeco Podcast: How to Read Code – Podcast V2, S3 E1 [FREE]

    November 25, 2024

    I took apart this cheap 600W charger to test its claims. What I found inside was not right

    February 9, 2025

    JMeter: Script in VM Vs Azure Pipeline

    August 11, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.