Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»LLM-KT: A Flexible Framework for Enhancing Collaborative Filtering Models with Embedded LLM-Generated Features

    LLM-KT: A Flexible Framework for Enhancing Collaborative Filtering Models with Embedded LLM-Generated Features

    November 7, 2024

    Collaborative Filtering (CF) is widely used in recommender systems to match user preferences with items but often struggles with complex relationships and adapting to evolving user interactions. Recently, researchers have explored using LLMs to enhance recommendations by leveraging their reasoning abilities. LLMs have been integrated into various stages, from knowledge generation to candidate ranking. While effective, this integration can be costly, and existing methods, such as KAR and LLM-CF, only enhance context-aware CF models by adding LLM-derived textual features. 

    Researchers from HSE University, MIPT, Ural Federal University, Sber AI Lab, AIRI, and ISP RAS developed LLM-KT, a flexible framework designed to enhance CF models by embedding LLM-generated features into intermediate model layers. Unlike previous methods that rely on directly inputting LLM-derived features, LLM-KT integrates these features within the model, allowing it to reconstruct and utilize the embeddings internally. This adaptable approach requires no architectural changes, making it suitable for various CF models. Experiments on the MovieLens and Amazon datasets show that LLM-KT significantly improves baseline models, achieving a 21% increase in NDCG@10 and performing comparably with state-of-the-art context-aware methods.

    The proposed method introduces a knowledge transfer approach that enhances CF models by embedding LLM-generated features within a designated internal layer. This approach allows CF models to intuitively learn user preferences without altering their architecture, creating profiles based on user-item interactions. LLMs use prompts tailored to each user’s interaction data to generate preference summaries, or “profiles,” which are then converted into embeddings with a pre-trained text model, such as “text-embedding-ada-002.” To optimize this integration, the CF model is trained with an auxiliary pretext task, combining the original model loss with a reconstruction loss that aligns profile embeddings with the CF model’s internal representations. This setup uses UMAP for dimensional alignment and RMSE for the reconstruction loss, ensuring that the model accurately represents user preferences.

    The LLM-KT framework, built on RecBole, supports flexible experimental configurations, allowing researchers to define detailed pipelines through a single configuration file. Key features include support for integrating LLM-generated profiles from various sources, an adaptable configuration system, and batch experiment execution with analytical tools for comparing results. The framework’s internal structure includes a Model Wrapper, which oversees essential components like the Hook Manager for accessing intermediate representations, the Weights Manager for fine-tuning control, and the Loss Manager for custom loss adjustments. This modular design streamlines knowledge transfer and fine-tuning, enabling researchers to efficiently test and refine CF models.

    The experimental setup evaluates the proposed knowledge transfer method for CF models in two ways: for traditional models using only user-item interaction data and for context-aware models that can utilize input features. Experiments were conducted on Amazon’s “CD and Vinyl” and MovieLens datasets, using a 70-10-20% train-validation-test split. Baseline CF models included NeuMF, SimpleX, and MultVAE, while KAR, DCN, and DeepFM were used for context-aware comparisons. The method was assessed with ranking metrics (NDCG@K, Hits@K, Recall@K) and AUC-ROC for click-through-rate tasks. Results showed consistent performance improvements across models, with comparable versatility and accuracy to existing approaches like KAR.

    The LLM-KT framework offers a versatile way to enhance CF models by embedding LLM-generated features within an intermediate layer, allowing models to leverage these embeddings internally. Unlike traditional methods that input LLM features directly, LLM-KT enables seamless knowledge transfer across various CF architectures without altering their structure. Built on the RecBole platform, the framework allows flexible configurations for easy integration and adaptation. Experiments on MovieLens and Amazon datasets confirm significant performance gains, showing that LLM-KT is competitive with advanced methods in context-aware models and applicable across a wider range of CF models.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

    [Sponsorship Opportunity with us] Promote Your Research/Product/Webinar with 1Million+ Monthly Readers and 500k+ Community Members

    The post LLM-KT: A Flexible Framework for Enhancing Collaborative Filtering Models with Embedded LLM-Generated Features appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleRole of QA in the Ramification of ISO 20022 Transformation 
    Next Article MIT Researchers Developed Heterogeneous Pre-trained Transformers (HPTs): A Scalable AI Approach for Robotic Learning from Heterogeneous Data

    Related Posts

    Machine Learning

    Salesforce AI Releases BLIP3-o: A Fully Open-Source Unified Multimodal Model Built with CLIP Embeddings and Flow Matching for Image Understanding and Generation

    May 16, 2025
    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    This month in security with Tony Anscombe – March 2025 edition

    Development

    Gwyddion – SPM data visualization and analysis

    Linux

    Meta AI Releases the First Stable Version of Llama Stack: A Unified Platform Transforming Generative AI Development with Backward Compatibility, Safety, and Seamless Multi-Environment Deployment

    Machine Learning

    Leveraging WebSockets for Real-Time Data in React Applications

    Development

    Highlights

    It’s time to stop calling it “pig butchering”

    December 20, 2024

    Online romance and investment scams are painful enough without its victims being described as “pigs.”…

    Google Fixes High-Severity Chrome Flaw Actively Exploited in the Wild

    August 22, 2024

    iOS 18.2 was killing my iPhone’s battery until I turned off this feature

    January 3, 2025

    Many Windows 11 users fail to install KB5050094, but there is a simple solution to fix this issue

    February 5, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.