Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»SmolLM2 Released: The New Series (0.1B, 0.3B, and 1.7B) of Small Language Models for On-Device Applications and Outperforms Meta Llama 3.2 1B

    SmolLM2 Released: The New Series (0.1B, 0.3B, and 1.7B) of Small Language Models for On-Device Applications and Outperforms Meta Llama 3.2 1B

    November 1, 2024

    In recent years, the surge in large language models (LLMs) has significantly transformed how we approach natural language processing tasks. However, these advancements are not without their drawbacks. The widespread use of massive LLMs like GPT-4 and Meta’s LLaMA has revealed their limitations when it comes to resource efficiency. These models, despite their impressive capabilities, often demand substantial computational power and memory, making them unsuitable for many users, particularly those wanting to deploy models on devices like smartphones or edge devices with limited resources. Running these massive LLMs locally is an expensive task, both in terms of hardware requirements and energy consumption. This has created a clear gap in the market for smaller, more efficient models that can run on-device while still delivering robust performance.

    In response to this challenge, Hugging Face has released SmolLM2—a new series of small models specifically optimized for on-device applications. SmolLM2 builds on the success of its predecessor, SmolLM1, by offering enhanced capabilities while remaining lightweight. These models come in three configurations: 0.1B, 0.3B, and 1.7B parameters. Their primary advantage is the ability to operate directly on devices without relying on large-scale, cloud-based infrastructure, opening up opportunities for a variety of use cases where latency, privacy, and hardware limitations are significant factors. SmolLM2 models are available under the Apache 2.0 license, making them accessible to a broad audience of developers and researchers.

    SmolLM2 is designed to overcome the limitations of large LLMs by being both compact and versatile. Trained on 11 trillion tokens from datasets such as FineWeb-Edu, DCLM, and the Stack, the SmolLM2 models cover a broad range of content, primarily focusing on English-language text. Each version is optimized for tasks such as text rewriting, summarization, and function calling, making them well-suited for a variety of applications—particularly for on-device environments where connectivity to cloud services may be limited. In terms of performance, SmolLM2 outperforms Meta Llama 3.2 1B, and in some benchmarks, such as Qwen2.5 1B, it has shown superior results.

    The SmolLM2 family includes advanced post-training techniques, including Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO), which enhance the models’ capacity for handling complex instructions and providing more accurate responses. Additionally, their compatibility with frameworks like llama.cpp and Transformers.js means they can run efficiently on-device, either using local CPU processing or within a browser environment, without the need for specialized GPUs. This flexibility makes SmolLM2 ideal for edge AI applications, where low latency and data privacy are crucial.

    The release of SmolLM2 marks an important step forward in making powerful LLMs accessible and practical for a wider range of devices. Unlike its predecessor, SmolLM1, which faced limitations in instruction following and mathematical reasoning, SmolLM2 shows significant improvements in these areas, especially in the 1.7B parameter version. This model not only excels in common NLP tasks but also supports more advanced functionalities like function calling—a feature that makes it particularly useful for automated coding assistants or personal AI applications that need to integrate seamlessly with existing software.

    Benchmark results underscore the improvements made in SmolLM2. With a score of 56.7 on IFEval, 6.13 on MT Bench, 19.3 on MMLU-Pro, and 48.2 on GMS8k, SmolLM2 demonstrates competitive performance that often matches or surpasses the Meta Llama 3.2 1B model. Furthermore, its compact architecture allows it to run effectively in environments where larger models would be impractical. This makes SmolLM2 especially relevant for industries and applications where infrastructure costs are a concern or where the need for real-time, on-device processing takes precedence over centralized AI capabilities.

    SmolLM2 offers high performance in a compact form suitable for on-device applications. With sizes from 135 million to 1.7 billion parameters, SmolLM2 provides versatility without compromising efficiency and speed for edge computing. It handles text rewriting, summarization, and complex function calls with improved mathematical reasoning, making it a cost-effective solution for on-device AI. As small language models grow in importance for privacy-conscious and latency-sensitive applications, SmolLM2 sets a new standard for on-device NLP.


    Check out the Model Series here. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

    [Trending] LLMWare Introduces Model Depot: An Extensive Collection of Small Language Models (SLMs) for Intel PCs

    The post SmolLM2 Released: The New Series (0.1B, 0.3B, and 1.7B) of Small Language Models for On-Device Applications and Outperforms Meta Llama 3.2 1B appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleLearning Through Play – CulinarySchools.org’s Educational Games
    Next Article Error’d: Alternative Maths

    Related Posts

    Machine Learning

    Salesforce AI Releases BLIP3-o: A Fully Open-Source Unified Multimodal Model Built with CLIP Embeddings and Flow Matching for Image Understanding and Generation

    May 16, 2025
    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Leave A Reply Cancel Reply

    Hostinger

    Continue Reading

    Marvel vs. Capcom Fighting Collection: Arcade Classics launches on Xbox today

    News & Updates

    International Baccalaureate Exam Hack Speculation Sparks Student Outrage

    Development

    Incorporate offline and online human – machine workflows into your generative AI applications on AWS

    Development

    10 Best AI Product Description Generator to Boost Sales in 2025

    Development
    GetResponse

    Highlights

    Development

    The U.S. Moves a Step Closer to a Cyber Force

    May 26, 2024

    A U.S. Cyber Force moved a step closer to reality this week after the House…

    5 Open-source Local AI Tools for Image Generation I Found Interesting

    February 10, 2025

    CVE-2025-3983 – AMTT Hotel Broadband Operation System NLog Down.php Remote Command Injection Vulnerability

    April 27, 2025

    MakuluLinux LinDoz 2025: Un Nuovo Standard nel Mondo delle Distribuzioni GNU/Linux

    December 28, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.