Reinforcement learning practitioners often avoid hierarchical policies, especially in image-based observation spaces. Typically, the single-task performance improvement over flat-policy counterparts does not justify the additional complexity associated with implementing a hierarchy. However, by introducing multiple decision-making levels, hierarchical policies can compose lower-level policies to more effectively generalize between tasks, highlighting the need for multi-task evaluations. We analyze the benefits of hierarchy through simulated multi-task robotic control experiments from pixels…
Source: Read MoreÂ