Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 4, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 4, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 4, 2025

      Smashing Animations Part 4: Optimising SVGs

      June 4, 2025

      I test AI tools for a living. Here are 3 image generators I actually use and how

      June 4, 2025

      The world’s smallest 65W USB-C charger is my latest travel essential

      June 4, 2025

      This Spotlight alternative for Mac is my secret weapon for AI-powered search

      June 4, 2025

      Tech prophet Mary Meeker just dropped a massive report on AI trends – here’s your TL;DR

      June 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025
      Recent

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025

      Simplify Negative Relation Queries with Laravel’s whereDoesntHaveRelation Methods

      June 4, 2025

      Cast Model Properties to a Uri Instance in 12.17

      June 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025
      Recent

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025

      Rilasciata /e/OS 3.0: Nuova Vita per Android Senza Google, Più Privacy e Controllo per l’Utente

      June 4, 2025

      Rilasciata Oracle Linux 9.6: Scopri le Novità e i Miglioramenti nella Sicurezza e nelle Prestazioni

      June 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Geometry-Guided Self-Assessment of Generative AI Models: Enhancing Diversity, Fidelity, and Control

    Geometry-Guided Self-Assessment of Generative AI Models: Enhancing Diversity, Fidelity, and Control

    August 21, 2024

    Deep generative models learn continuous data representations from a limited set of training samples, with global metrics like Fréchet Inception Distance (FID) often used to evaluate their performance. However, these models may perform inconsistently across different regions of the learned manifold, especially in foundation models like Stable Diffusion, where generation quality can vary based on conditioning or initial noise. The rise in generative model capabilities has driven the need for more detailed evaluation methods, including metrics that assess fidelity and diversity separately and human evaluations that address concerns like bias and memorization.

    Researchers from Google, Rice University, McGill University, and Google DeepMind explore the connection between the local geometry of generative model manifolds and the quality of generated samples. They use three geometric descriptors—local scaling, rank, and complexity—to analyze the manifold of a pre-trained model. Their findings reveal correlations between these descriptors and factors like generation aesthetics, artifacts, uncertainty, and memorization. Additionally, they demonstrate that training a reward model on these geometric properties can influence the likelihood of generated samples, enhancing control over the diversity and fidelity of outputs, particularly in models like Stable Diffusion.

    The researchers discuss continuous piecewise-linear (CPWL) generative models, which include decoders of VAEs, GAN generators, and DDIMs. These models map input space to output space through affine operations, resulting in a partitioned input space with each region mapped to the data manifold. They define local geometric descriptors—complexity, scaling, and rank—to analyze the learned manifold’s smoothness, density, and dimensionality. A toy example illustrates that higher local scaling correlates with lower sample density, and local complexity varies across regions. These descriptors help guide the generation process by influencing sample characteristics based on manifold geometry.

    The study explores the geometry of data manifolds learned by various generative models, focusing on denoising diffusion probabilistic models (DDPMs) and Stable Diffusion. It examines the relationship between local geometric descriptors (complexity, scaling, and rank) and factors like noise levels, model training steps, and prompt guidance. The study reveals that higher noise or guidance scales typically increase model complexity and quality, while memorized prompts result in lower uncertainty. The analysis of ImageNet and out-of-distribution samples, such as X-rays, demonstrates that local geometry can effectively distinguish between in- and out-of-domain data, impacting generation diversity and quality.

    The study explores how geometric descriptors, particularly local scaling, can guide generative models to produce varied and detailed outputs. The generative process can be steered using classifier guidance to maximize local scaling, leading to sharper, more textured images with higher diversity. Conversely, they minimize local scaling, resulting in blurred photos with reduced detail. A reward model approximates local scaling, enabling instance-level intervention in the generative process. This approach enhances diversity at the image level, offering a precise method for controlling the output of generative models.

    The study introduces a self-assessment method for generative models using geometry-based descriptors—local scaling, rank, and complexity—without relying on training data or human evaluators. These descriptors help evaluate the learned manifold’s uncertainty, dimensionality, and smoothness, revealing insights into generation quality, diversity, and biases. The study highlights the impact of manifold geometry on model performance. Still, it acknowledges two key limitations: the influence of training dynamics on manifold geometry and the computational challenges, especially with large models. Future research should focus on understanding this relationship and developing more efficient computational methods.

    Hostinger

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

    Don’t Forget to join our 48k+ ML SubReddit

    Find Upcoming AI Webinars here

    The post Geometry-Guided Self-Assessment of Generative AI Models: Enhancing Diversity, Fidelity, and Control appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHELP (Hierarchical Embeddings-based Log Parser): A Semantic Embeddings-based Framework for Real-Time Log Parsing
    Next Article DataVisT5: A Powerful Pre-Trained Language Model for Seamless Data Visualization Tasks

    Related Posts

    Security

    HPE StoreOnce Faces Critical CVE-2025-37093 Vulnerability — Urges Immediate Patch Upgrade

    June 4, 2025
    Security

    CISA Adds Qualcomm Vulnerabilities to KEV Catalog

    June 4, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Intel says PC gaming handhelds are its “number one priority” — can Arrow/Panther Lake chips challenge AMD’s dominance?

    News & Updates

    Best Bread brand Hyderabad

    Web Development

    CVE-2022-26037 – Apache HTTP Server Cross-Site Scripting

    Common Vulnerabilities and Exposures (CVEs)

    Microsoft on how custom AI offers your business better answers, lower costs, faster innovation

    News & Updates

    Highlights

    Sentence embedding technology in the age of artificial intelligence

    August 29, 2024

    Imagine searching for a crucial piece of information in a traditional search engine, only to…

    tonysm/importmap-laravel

    June 17, 2024

    Export Amazon RDS for MySQL and MariaDB databases to Amazon S3 using a custom API

    July 26, 2024

    Exciting New Tools For Designers, November 2024

    November 27, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.