Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»DaCapo: An Open-Sourced Deep Learning Framework to Expedite the Training of Existing Machine Learning Approaches on Large and Near-Isotropic Image Data

    DaCapo: An Open-Sourced Deep Learning Framework to Expedite the Training of Existing Machine Learning Approaches on Large and Near-Isotropic Image Data

    August 14, 2024

    Accurate segmentation of structures like cells and organelles is crucial for deriving meaningful biological insights from imaging data. However, as imaging technologies advance, images’ growing size, dimensionality, and complexity present challenges for scaling existing machine-learning techniques. This is particularly evident in volume electron microscopy, such as focused ion beam-scanning electron microscopy (FIB-SEM) with near-isotropic capabilities. Traditional 2D neural network-based segmentation methods still need to be fully optimized for these high-dimensional imaging modalities, highlighting the need for more advanced approaches to handle the increased data complexity effectively.

    Researchers at Janelia Research Campus have developed DaCapo, an open-source framework designed for scalable deep learning applications, particularly for segmenting large and complex imaging datasets like those produced by FIB-SEM. DaCapo’s modular design allows customization to suit various needs, such as 2D or 3D segmentation, isotropic or anisotropic data, and different neural network architectures. It supports blockwise distributed deployment across local, cluster, or cloud infrastructures, making it adaptable to different computational environments. DaCapo aims to enhance accessibility to large-scale image segmentation and invites community collaboration.

    DaCapo streamlines the training process for deep learning models by managing data loading, augmentation, loss calculation, and parameter optimization. Users can easily designate data subsets for training or validation using a CSV file. DaCapo handles model checkpointing and performs parameter sweeps for post-processing, evaluating performance metrics like F1-score, Jaccard index, and Variation of Information. It also offers flexibility in task specification, allowing users to switch between segmentation tasks and prediction targets with minimal code changes. This modular design enables easy customization and scalability across various computational environments, enhancing the efficiency of model training and deployment.

    DaCapo is a comprehensive framework designed for training and deploying deep learning models, particularly for large-scale biological image segmentation. It includes pre-built model architectures, such as 2D and 3D UNets, and supports the integration of user-trained or pretrained models. Notably, it provides access to pretrained networks from the COSEM Project Team, which are useful for segmenting cells and subcellular structures in FIB-SEM images. Users can download and fine-tune these models for specific datasets, with future models like CellMap expected to be added to DaCapo’s offerings. The platform encourages community contributions to expand its model repository.

    To handle petabyte-scale datasets, DaCapo utilizes blockwise inference and post-processing, leveraging tools like Daisy and chunked file formats (e.g., Zarr-V2 and N5) to efficiently process large volumes of data. This approach eliminates edge artifacts and allows for the seamless parallelization of both semantic and instance segmentation tasks. Users can also create custom scripts for tailored post-processing without expertise in parallelization or chunked formats. An example implementation includes using Empanada for mitochondria segmentation in large image volumes, showcasing the platform’s versatility and scalability.

    DaCapo’s compute context configuration offers flexibility in managing operations on local nodes, distributed clusters, or cloud environments. It supports a range of storage options and compute environments, with easy deployment facilitated by a Docker image for cloud resources like AWS. The platform continuously evolves, with plans to enhance its user interface, expand its pretrained model repository, and improve scalability. The DaCapo team invites the community to contribute to its ongoing development, aiming to advance the field of biological image analysis.

    Check out the Paper and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

    Don’t Forget to join our 48k+ ML SubReddit

    Find Upcoming AI Webinars here

    Researchers at FPT Software AI Center Introduce XMainframe: A State-of-the-Art Large Language Model (LLM) Specialized for Mainframe Modernization to Address the $100B Legacy Code Modernization

    The post DaCapo: An Open-Sourced Deep Learning Framework to Expedite the Training of Existing Machine Learning Approaches on Large and Near-Isotropic Image Data appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMicrosoft and Paige Researchers Developed Virchow2 and Virchow2G: Second-Generation Foundation Models for Computational Pathology
    Next Article wholesale hats | otto hat | bulk hats | wholesale caps

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-40906 – MongoDB BSON Serialization BSON::XS Multiple Vulnerabilities

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Built by one of Diablo and Blizzard’s co-founders, this new Xbox game tasks you with raising a son in the zombie apocalypse — you’ve already been bitten

    News & Updates

    Sustainable web design: How to reduce your website’s carbon footprint

    Development

    Error’d: Too Spicy For My Hat

    Development

    New Amazon Neptune engine version delivers up to 9 times faster and 10 times higher throughput for openCypher query performance

    Databases

    Highlights

    Artificial Intelligence

    Puzzling out climate change

    February 10, 2025

    Shreyaa Raghavan’s journey into solving some of the world’s toughest challenges started with a simple…

    CVE-2025-46348 – YesWiki Unauthenticated Archive Creation and Download Vulnerability

    April 29, 2025

    Tailwind’s @apply Feature is Better Than it Sounds

    April 10, 2025

    Your Pixel Watch just got a new scam-busting feature – how to enable it

    April 8, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.