Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Darts: A New Python Library for User-Friendly Forecasting and Anomaly Detection on Time Series

    Darts: A New Python Library for User-Friendly Forecasting and Anomaly Detection on Time Series

    August 1, 2024

    Time series data, representing observations recorded sequentially over time, permeate various aspects of nature and business, from weather patterns and heartbeats to stock prices and production metrics. Efficiently processing and forecasting these data series can offer significant advantages, such as strategic business planning and anomaly detection in complex systems. However, despite the numerous models and tools available for time series analysis, their complexities and diverse APIs often present challenges to users. Recognizing these difficulties, Unit8 has developed and open-sourced a new tool called Darts, aimed at simplifying time series processing and forecasting in Python.

    Data scientists working with time series data often find themselves navigating a fragmented landscape of tools. Typically, a different library is needed for each step: Pandas for preprocessing, statsmodels for seasonality detection, Facebook Prophet for forecasting, and custom scripts for backtesting and model selection. This disjointed workflow is not only tedious but also complicates the process of integrating more advanced models like neural networks, which may require libraries such as TensorFlow or PyTorch. These challenges underscore the need for a more streamlined, consistent, and user-friendly solution.

    https://medium.com/unit8-machine-learning-publication/darts-time-series-made-easy-in-python-5ac2947a8878

    Darts is Python library that aims to be the scikit-learn for time series analysis. By providing a unified and consistent API, Darts simplifies the end-to-end process of working with time series data. It integrates various functionalities—data manipulation, model fitting, forecasting, and backtesting—into a single framework, making it easier for users to switch between models and approaches without dealing with compatibility issues.

    At the core of Darts is the TimeSeries data type, designed to represent multivariate and potentially probabilistic time series. This format ensures that time series are well-formed with a proper time index and can handle multiple samples for probabilistic models. Users can easily convert Pandas DataFrames into TimeSeries objects, facilitating seamless integration with existing data workflows.

    Darts mimics the scikit-learn model interface, where the fit() method is used for training models and the predict() method for making forecasts. This consistent interface allows users to experiment with different models, from traditional methods like Exponential Smoothing and Auto-ARIMA to advanced neural network-based models like RNNs and Transformers. The library supports both univariate and multivariate time series, and can generate deterministic or probabilistic forecasts.

    For example, training an Exponential Smoothing model on a time series of air passenger data involves just a few lines of code. The trained model can then generate forecasts, which can be visualized along with the actual data. Darts also supports backtesting, enabling users to evaluate model performance by simulating real-time forecasting scenarios and comparing historical forecasts with actual outcomes.

    Darts offers a wide range of built-in models, including Exponential Smoothing, (V)ARIMA, Facebook Prophet, and various deep learning models like RNNs, TCNs, and Transformers. These models can be easily interchanged and compared, thanks to the unified fit() and predict() interface. Additionally, Darts provides robust support for deep learning, allowing models to be trained on multiple time series and covariates, with the capability to leverage GPUs for large datasets.

    The library includes tools for backtesting and model evaluation, such as the historical_forecasts() function, which generates forecasts for specified horizons and timestamps, and calculates error metrics like the Mean Absolute Percentage Error (MAPE). This functionality enables users to fine-tune models and assess their accuracy and reliability over time.

    Darts also supports more advanced features like probabilistic filtering, grid search for hyperparameter tuning, and automatic model selection. Its design ensures that TimeSeries objects are immutable, promoting a functional programming style and reducing the risk of unintended side effects.

    Darts addresses the inherent complexities of time series analysis by offering a comprehensive, unified framework that simplifies model training, forecasting, and evaluation. By integrating various functionalities into a single, consistent API, Darts enhances the user experience and boosts productivity, making it an invaluable tool for data scientists and analysts working with time series data. The ongoing development and open-source nature of Darts ensure that it will continue to evolve, incorporating new features and improvements driven by community contributions.

    The post Darts: A New Python Library for User-Friendly Forecasting and Anomaly Detection on Time Series appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleGemma 2-2B Released: A 2.6 Billion Parameter Model Offering Advanced Text Generation, On-Device Deployment, and Enhanced Safety Features
    Next Article Meet Torchchat: A Flexible Framework for Accelerating Llama 3, 3.1, and Other Large Language Models Across Laptop, Desktop, and Mobile

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-40906 – MongoDB BSON Serialization BSON::XS Multiple Vulnerabilities

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Meet Baichuan-M1: A New Series of Large Language Models Trained on 20T Tokens with a Dedicated Focus on Enhancing Medical Capabilities

    Machine Learning

    How to set browser window size using Phantom JS + Java

    Development

    I’m a hardware Android user – but likely won’t upgrade to Pixel 10 for the reason that Google thinks

    Development

    Is the PowerA Fusion Pro 4 the best affordable controller for ‘professional’ gaming?

    Development
    GetResponse

    Highlights

    Traditional EDR won’t cut it: why you need zero trust endpoint security

    November 26, 2024

    Detection-based solutions are no longer the heavy hitters of the modern security arsenal. It’s time…

    How 3D Printing Is Changing the Nerf Hobby

    August 19, 2024

    This subscription-free smart ring with remarkable battery life isn’t from Oura or Samsung

    February 11, 2025

    New ‘ALBeast’ Vulnerability Exposes Weakness in AWS Application Load Balancer

    August 23, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.