Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»TFT-ID (Table/Figure/Text IDentifier): An Object Detection AI Model Finetuned to Extract Tables, Figures, and Text Sections in Academic Papers

    TFT-ID (Table/Figure/Text IDentifier): An Object Detection AI Model Finetuned to Extract Tables, Figures, and Text Sections in Academic Papers

    July 28, 2024

    The number of academic papers released daily is increasing, making it difficult for researchers to track all the latest innovations. Automating the data extraction process, especially from tables and figures, can allow researchers to focus on data analysis and interpretation rather than manual data extraction. With quicker access to relevant data, researchers can accelerate the pace of their work and contribute to advancements in their fields.

    Traditionally, researchers extract information from tables and figures manually, which is time-consuming and prone to human error. Some general object detection models, such as YOLO and Faster R-CNN, have been adapted for this task, but they may need to be more specialized to understand academic paper layouts. Document layout analysis models focus on the overall structure of documents but might need more precision for accurately locating tables and figures. 

    Researchers propose a family of object detection models, TF-ID (Table/Figure Identifier), to address the challenge of automatically locating and extracting tables and figures from academic papers. These models leverage object detection techniques to identify and locate tables and figures within academic papers. The model is trained on a large dataset of academic papers with manually annotated table and figure regions, allowing it to recognize visual patterns associated with these elements.

    The TF-ID model uses object detection techniques to identify and locate specific objects, such as tables and figures, within images of academic papers. During training, the model learns to recognize visual patterns like grid structures, captions, and image formats. Once trained, the model processes new academic papers and outputs bounding boxes that indicate the locations of detected tables and figures. These bounding boxes can then be used for further processing, such as image cropping, optical character recognition (OCR), or data extraction. Additionally, TF-ID unlocks valuable information often hidden within visual elements, enabling deeper insights and knowledge discovery. This automation enhances data accuracy compared to manual methods, leading to more reliable research findings.

    The performance of TF-ID models can vary based on factors like the size and quality of the training dataset, the complexity of the academic paper layouts, and the specific object detection architecture used. Although the performance of TF-ID is not quantified, its features suggest that the models generally outperform manual methods in terms of speed and accuracy. However, complex layouts with overlapping figures or tables still pose challenges.

    In conclusion, using object detection techniques, the TF-ID model effectively addresses the problem of manually extracting tables and figures from academic papers. The proposed method leverages a large dataset and sophisticated training to locate tables and figures accurately, significantly outperforming manual methods in speed and accuracy. While there are still challenges in handling complex layouts and recognizing table structures, TF-ID represents a significant advancement in automating data extraction from academic literature. 

    Check out the Model and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

    Don’t Forget to join our 47k+ ML SubReddit

    Find Upcoming AI Webinars here

    The post TFT-ID (Table/Figure/Text IDentifier): An Object Detection AI Model Finetuned to Extract Tables, Figures, and Text Sections in Academic Papers appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleIs the Future of Agentic AI Personal? Meet PersonaRAG: A New AI Method that Extends Traditional RAG Frameworks by Incorporating User-Centric Agents into the Retrieval Process
    Next Article OpenDevin: An Artificial Intelligence Platform for the Development of Powerful AI Agents that Interact in Similar Ways to Those of a Human Developer

    Related Posts

    Machine Learning

    LLMs Struggle with Real Conversations: Microsoft and Salesforce Researchers Reveal a 39% Performance Drop in Multi-Turn Underspecified Tasks

    May 17, 2025
    Machine Learning

    This AI paper from DeepSeek-AI Explores How DeepSeek-V3 Delivers High-Performance Language Modeling by Minimizing Hardware Overhead and Maximizing Computational Efficiency

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Portable Storage Policy

    News & Updates

    API with NestJS #160. Using views with the Drizzle ORM and PostgreSQL

    Development

    Acer’s refreshed laptops may be the most versatile devices I’ve seen at CES 2025

    Development

    Restic Robot – wrapper for Restic

    Linux
    Hostinger

    Highlights

    Linux

    Rilasciata AnduinOS 1.3: La distribuzione GNU/Linux che porta l’esperienza di Windows 11 su Ubuntu 25.04

    May 1, 2025

    AnduinOS è una giovane distribuzione GNU/Linux basata su Ubuntu che si distingue per offrire un…

    Rilasciato OBS Studio 31: Cosa Aspettarsi dalla Nuova Versione

    December 7, 2024

    Novità in Ubuntu 25.04 (Plucky Puffin) Beta

    March 28, 2025

    Improve Your Next Experiment by Learning Better Proxy Metrics From Past Experiments

    August 26, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.