Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Researchers at IT University of Copenhagen Propose Self-Organizing Neural Networks for Enhanced Adaptability

    Researchers at IT University of Copenhagen Propose Self-Organizing Neural Networks for Enhanced Adaptability

    July 8, 2024

    Artificial neural networks (ANNs) traditionally lack the adaptability and plasticity seen in biological neural networks. This limitation poses a significant challenge for their application in dynamic and unpredictable environments. The inability of ANNs to continuously adapt to new information and changing conditions hinders their effectiveness in real-time applications such as robotics and adaptive systems. Developing ANNs that can self-organize, learn from experiences, and adapt throughout their lifetime is crucial for advancing the field of artificial intelligence (AI).

    Current methods addressing neural plasticity include meta-learning and developmental encodings. Meta-learning techniques, such as gradient-based methods, aim to create adaptable ANNs but often come with high computational costs and complexity. Developmental encodings, including Neural Developmental Programs (NDPs), show potential in evolving functional neural structures but are confined to pre-defined growth phases and lack mechanisms for continuous adaptation. These existing methods are limited by computational inefficiency, scalability issues, and an inability to handle non-stationary environments, making them unsuitable for many real-time applications.

    The researchers from the IT University of Copenhagen introduce Lifelong Neural Developmental Programs (LNDPs), a novel approach extending NDPs to incorporate synaptic and structural plasticity throughout an agent’s lifetime. LNDPs utilize a graph transformer architecture combined with Gated Recurrent Units (GRUs) to enable neurons to self-organize and differentiate based on local neuronal activity and global environmental rewards. This approach allows dynamic adaptation of the network’s structure and connectivity, addressing the limitations of static and pre-defined developmental phases. The introduction of spontaneous activity (SA) as a mechanism for pre-experience development further enhances the network’s ability to self-organize and develop innate skills, making LNDPs a significant contribution to the field.

    LNDPs involve several key components: node and edge models, synaptogenesis, and pruning functions, all integrated into a graph transformer layer. Nodes’ states are updated using the output of the graph transformer layer, which includes information about node activations and structural features. Edges are modeled with GRUs that update based on pre-and post-synaptic neuron states and received rewards. Structural plasticity is achieved through synaptogenesis and pruning functions that dynamically add or remove connections between nodes. The framework is implemented using various reinforcement learning tasks, including Cartpole, Acrobot, Pendulum, and a foraging task, with hyperparameters optimized using the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES).

    The researchers demonstrate the effectiveness of LNDPs across several reinforcement learning tasks, including Cartpole, Acrobot, Pendulum, and a foraging task. The below key performance metrics from the paper show that networks with structural plasticity significantly outperform static networks, especially in environments requiring rapid adaptation and non-stationary dynamics. In the Cartpole task, LNDPs with structural plasticity achieved higher rewards in initial episodes, showcasing faster adaptation capabilities. The inclusion of spontaneous activity (SA) phases greatly enhanced performance, enabling networks to develop functional structures before interacting with the environment. Overall, LNDPs demonstrated superior adaptation speed and learning efficiency, highlighting their potential for developing adaptable and self-organizing AI systems.

    In conclusion, LNDPs represent a framework for evolving self-organizing neural networks that incorporate lifelong plasticity and structural adaptability. By addressing the limitations of static ANNs and existing developmental encoding methods, LNDPs offer a promising approach for developing AI systems capable of continuous learning and adaptation. This proposed method demonstrates significant improvements in adaptation speed and learning efficiency across various reinforcement learning tasks, highlighting its potential impact on AI research. Overall, LNDPs represent a substantial step towards more naturalistic and adaptable AI systems.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. 

    Join our Telegram Channel and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 46k+ ML SubReddit

    The post Researchers at IT University of Copenhagen Propose Self-Organizing Neural Networks for Enhanced Adaptability appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleGoogle Researchers Propose a Formal Boosting Machine Learning Algorithm for Any Loss Function Whose Set of Discontinuities has Zero Lebesgue Measure
    Next Article Tsinghua University Open Sources CodeGeeX4-ALL-9B: A Groundbreaking Multilingual Code Generation Model Outperforming Major Competitors and Elevating Code Assistance

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47916 – Invision Community Themeeditor Remote Code Execution

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    CVE-2023-53142 – “Ice: Buffer Overflow in ice_get_module_eeprom()”

    Common Vulnerabilities and Exposures (CVEs)

    Sign in as anyone: Bypassing SAML SSO authentication with parser differentials

    News & Updates

    Hackers Use Corrupted ZIPs and Office Docs to Evade Antivirus and Email Defenses

    Development

    Dragon Quest I & II HD-2D Remake teaser trailer gameplay hints at big story changes coming to these legendary titles

    News & Updates
    GetResponse

    Highlights

    Learning Resources

    Exploring LXC Containerization for Ubuntu Servers

    January 28, 2025

    by George Whittaker Introduction In the world of modern software development and IT infrastructure, containerization…

    korridor/laravel-has-many-merged

    March 16, 2025

    CVE-2025-43004 – Apache Cassandra Authentication Bypass Vulnerability

    May 13, 2025

    This AI Paper Introduces a Novel Artificial Intelligence Approach in Precision Text Retrieval Using Retrieval Heads

    April 29, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.