Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 14, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 14, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 14, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 14, 2025

      I test a lot of AI coding tools, and this stunning new OpenAI release just saved me days of work

      May 14, 2025

      How to use your Android phone as a webcam when your laptop’s default won’t cut it

      May 14, 2025

      The 5 most customizable Linux desktop environments – when you want it your way

      May 14, 2025

      Gen AI use at work saps our motivation even as it boosts productivity, new research shows

      May 14, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025
      Recent

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025

      Perficient’s “What If? So What?” Podcast Wins Gold at the 2025 Hermes Creative Awards

      May 14, 2025

      PIM for Azure Resources

      May 14, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025
      Recent

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025

      You can now share an app/browser window with Copilot Vision to help you with different tasks

      May 14, 2025

      Microsoft will gradually retire SharePoint Alerts over the next two years

      May 14, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»CaLM: Bridging Large and Small Language Models for Credible Information Generation

    CaLM: Bridging Large and Small Language Models for Credible Information Generation

    June 30, 2024

    The paper addresses the challenge of ensuring that large language models (LLMs) generate accurate, credible, and verifiable responses by correctly citing reliable sources. Existing methods often need help with errors and hallucinations, leading to incorrect or misleading information in generated responses. This research aims to improve the accuracy and reliability of LLM outputs by introducing a novel verification framework. As LLMs have become increasingly powerful and prevalent, it is crucial to investigate how their performance scales with model size and training data. The authors aim to provide insights into the scaling properties of LLMs and how they differ from smaller models. 

    Currently, LLMs are used for tasks requiring information retrieval and generation, emphasizing grounding responses in verifiable sources. Standard approaches include retrieval-augmented generation, where LLMs are instructed to generate responses along with corresponding sources in a single inference run. More sophisticated methods involve preprocessing steps, such as summarizing relevant documents or extracting key information to enrich the input query. However, these approaches face challenges in maintaining accuracy and citation quality due to the complexity of processing large volumes of data in one go and the risk of error propagation from preprocessing steps.

    The proposed solution, CaLM (Contrasting Large and Small Language Models), leverages the complementary strengths of large and small LMs. CaLM employs a post-verification approach, where a smaller LM validates the outputs of a larger LM. The smaller LM scrutinizes the cited documents to confirm the accuracy of the larger LM’s citations. If the responses align, the large LM’s answer is verified; CaLM iteratively refines the response using a feedback loop if discrepancies are found. This method enhances the grounded generation capabilities of large LMs without requiring model fine-tuning.

    CaLM’s verification process involves using a smaller LM to cross-reference the output of a larger LM with the cited documents. The smaller LM, which relies less on parametric memory and excels at processing relevant information, assesses whether the larger LM’s response is consistent with the information from the cited sources. This method capitalizes on the smaller LM’s sensitivity to input relevance, ensuring any inconsistencies are identified and corrected. The iterative feedback loop allows for continuous refinement of the response, significantly improving citation accuracy and overall answer quality.

    Experiments conducted on three open-domain question-answering datasets (QAMPARI, ASQA, and ELI5) demonstrated substantial performance gains using CaLM. The method improved answer accuracy and citation quality, outperforming state-of-the-art methods by 1.5% to 7% on average. The framework proved robust even in challenging scenarios with less powerful retrieval systems, highlighting its effectiveness in enhancing the grounded generation capabilities of LLMs.

    The CaLM framework effectively addresses the problem of ensuring accurate and verifiable responses from LLMs by leveraging the strengths of both large and small language models. By employing a post-verification approach and iterative refinement, CaLM significantly improves the quality and reliability of LLM outputs, making it a valuable advancement in the field of language model research. The findings suggest that while LLMs offer significant performance improvements, their scaling behavior is complex and task-dependent. This research contributes to a better understanding of the capabilities and limitations of large language models, which is crucial for their effective deployment in real-world applications.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. 

    Join our Telegram Channel and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 45k+ ML SubReddit

    The post CaLM: Bridging Large and Small Language Models for Credible Information Generation appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMuxServe: A Flexible and Efficient Spatial-Temporal Multiplexing System to Serve Multiple LLMs Concurrently
    Next Article Innovative Machine Learning-Driven Discovery of Broadly Neutralizing Antibodies Against HIV-1 Using the RAIN Computational Pipeline

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 15, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-30419 – NI Circuit Design Suite SymbolEditor Out-of-Bounds Read Vulnerability

    May 15, 2025
    Leave A Reply Cancel Reply

    Hostinger

    Continue Reading

    Windows Central Podcast: Nobody wants the Surface Laptop 7?

    News & Updates

    Elden Ring DLC: What level should you be for Shadow of the Erdtree?

    Development

    The Future of Frontend Engineering: Trends for 2025 and Beyond

    Development

    Fitbit is dying a slow death

    News & Updates

    Highlights

    ACS: 12 Steps to Address Australia’s Skills Shortage

    November 8, 2024

    The Australian Computer Society offers key recommendations for tackling Australia’s tech skills shortage and boosting…

    ​​Nanonets announces partnership with Sage

    August 19, 2024

    CVE-2025-44854 – Totolink CP900 Command Injection Vulnerability

    May 1, 2025

    Build scalable, event-driven architectures with Amazon DynamoDB and AWS Lambda

    November 12, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.