Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Deepening Safety Alignment in Large Language Models (LLMs)

    Deepening Safety Alignment in Large Language Models (LLMs)

    June 13, 2024

    Artificial Intelligence (AI) alignment strategies are critical in ensuring the safety of Large Language Models (LLMs). These techniques often combine preference-based optimization techniques like Direct Preference Optimisation (DPO) and Reinforcement Learning with Human Feedback (RLHF) with supervised fine-tuning (SFT). By modifying the models to avoid interacting with hazardous inputs, these strategies seek to reduce the likelihood of producing damaging material. 

    Previous studies have revealed that these alignment techniques are vulnerable to multiple weaknesses. For example, adversarially optimized inputs, small fine-tuning changes, or tampering with the model’s decoding parameters can still fool aligned models into answering malicious queries. Since alignment is so important and widely used to ensure LLM safety, it is crucial to comprehend the causes of the weaknesses in the safety alignment procedures that are now in place and to provide workable solutions for them.

    In a recent study, a team of researchers from Princeton University and Google DeepMind has uncovered a basic flaw in existing safety alignment that leaves models especially vulnerable to relatively easy exploits. The alignment frequently only impacts the model’s initial tokens, which is a phenomenon known as shallow safety alignment. The entire generated output may wander into dangerous terrain if the model’s initial output tokens are changed to diverge from safe responses. 

    The research has shown through systematic trials that the initial tokens of the outputs of aligned and unaligned models show the main variation in safety behaviors. The effectiveness of some attack techniques, which center on starting destructive trajectories, can be explained by this shallow alignment. For instance, the original tokens of a destructive reaction are frequently drastically changed by adversarial suffix attacks and fine-tuning attacks. 

    The study has demonstrated how the alignment of the model may be reversed by merely changing these starting tokens, underscoring the reason why even small adjustments to the model might jeopardize it. The team has shared that alignment techniques should be used in the future to extend their impacts further into the output. It presents a data augmentation technique that uses safety alignment data to train models with damaging answers that eventually become safe refusals. 

    By increasing the gap between aligned and unaligned models at deeper token depths, this method seeks to improve robustness against widely used exploits. In order to mitigate fine-tuning attacks, the study has proposed a limited optimization objective that is centered on avoiding significant shifts in initial token probabilities. This approach shows how shallow current model alignments are and offers a possible defense against fine-tuning attacks.

    In conclusion, this study presents the idea of shallow versus deep safety alignment, demonstrating how the state-of-the-art approaches are comparatively shallow, giving rise to a number of known exploits. This study presents preliminary approaches to mitigate these problems. The team has suggested future research to explore techniques ensuring that safety alignment extends beyond just the first few tokens.

    Check out the Paper and Project. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 44k+ ML SubReddit

    Our recent paper shows:
    1. Crrent LLM safety alignment is only a few tokens deep.
    2. Deepening the safety alignment can make it more robust against multiple jailbreak attacks.
    3. Protecting initial token positions can make the alignment more robust against fine-tuning attacks. pic.twitter.com/QKggOxyuVv

    — Xiangyu Qi (@xiangyuqi_pton) June 8, 2024

    The post Deepening Safety Alignment in Large Language Models (LLMs) appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleEchion Technologies raises £29M for niobium-based battery tech
    Next Article Researchers at Stanford Introduce TEXTGRAD: A Powerful AI Framework Performing Automatic “Differentiation” via Text

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47916 – Invision Community Themeeditor Remote Code Execution

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    jeremy379/laravel-openid-connect

    Development

    OttoKit WordPress Plugin with 100K+ Installs Hit by Exploits Targeting Multiple Flaws

    Development

    The Demand For A New Era of Automotive Loyalty

    Development

    UniLLMRec: An End-to-End LLM-Centered Recommendation Framework to Execute Multi-Stage Recommendation Tasks Through Chain-of-Recommendations

    Development

    Highlights

    Enhancing Financial Services with On-Device AI: Security and User Experience

    June 27, 2024

    Integrating AI into banking services will obviously revolutionize the user experience in financial services, offering…

    DDoS Attacks Surge 46% in First Half of 2024, Gcore Report Reveals

    August 14, 2024

    Goodbye, model picker: OpenAI will soon kill o3 on ChatGPT to make room for GPT-5

    February 13, 2025

    Machine learning unlocks secrets to advanced alloys

    July 27, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.