Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Apple Intelligence: Leading the Way in On-Device AI with Advanced Fine-Tuned Models and Privacy

    Apple Intelligence: Leading the Way in On-Device AI with Advanced Fine-Tuned Models and Privacy

    June 11, 2024

    Apple made a significant announcement, strongly advocating for on-device AI through its newly introduced Apple Intelligence. This innovative approach emphasizes the integration of a ~3 billion parameter language model (LLM) on devices like Mac, iPhone, and iPad, leveraging fine-tuned LoRA adapters to perform specialized tasks. This model claims to outperform larger models, such as the 7 billion and 3 billion parameter LLMs, marking a major step forward in on-device AI capabilities.

    Technological Advancements

    On-Device Model

    Apple’s on-device model is designed with grouped-query-attention, activation, and embedding quantization running on the neural engine. This setup allows the iPhone 15 Pro to achieve impressive performance metrics, including a time-to-first-token of just 0.6 milliseconds and a token generation rate of 30 tokens per second. Despite the smaller model size, Apple’s fine-tuned LoRA adapters enable dynamic loading, caching, and model swapping as needed, optimizing performance for various tasks.

    Server Model

    While specific details about the server model size remain undisclosed, it supports a larger vocabulary size of 100,000 tokens than the on-device model’s 49,000 tokens. The server model matches the performance of GPT-4-Turbo, indicating Apple’s ability to compete with some of the most advanced AI systems currently available.

    Image Source

    Training and Optimization

    Apple uses its AXLearn framework, built on JAX and FSP, to train these models on TPUs and GPUs. The training process incorporates rejection sampling, descent policy optimization, and leave-one-out advantage for reinforcement learning from human feedback (RLHF). This combination ensures that the models are highly capable, efficient, and robust in real-world applications.

    Image Source

    Synthetic Data and Evaluation

    Apple utilizes synthetic data generation to enhance model training for tasks like summarization, ensuring high accuracy and efficiency. Evaluation samples are extensive, with 750 samples used for each production use case to rigorously test the models’ performance.

    Privacy and Security

    A cornerstone of Apple’s AI strategy is privacy. The models are designed to run on-device, ensuring user data remains secure and private. Using fine-tuned adapters also means addressing specific user needs without compromising overall model integrity or user privacy.

    Performance and User Experience

    The combination of Apple’s on-device and server models delivers a seamless user experience. The on-device model achieves significant milestones in summarization tasks, outperforming competitors like Phi-3 mini. The server model also excels, demonstrating comparable performance to GPT-4-Turbo. Apple’s models are noted for their low violation rates in handling adversarial prompts, underscoring their robustness and safety.

    Image Source

    Conclusion

    Apple’s foray into on-device AI with Apple Intelligence represents a major technological leap. By leveraging fine-tuned LoRA adapters and focusing on privacy and efficiency, Apple is setting new standards in the AI landscape. The detailed integration of these models across iPhone, iPad, and Mac promises to enhance daily user activities, making AI a more integral part of Apple’s ecosystem.

    The post Apple Intelligence: Leading the Way in On-Device AI with Advanced Fine-Tuned Models and Privacy appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleEnhancing Large-scale Parallel Training Efficiency with C4 by Alibaba
    Next Article Get started quickly with AWS Trainium and AWS Inferentia using AWS Neuron DLAMI and AWS Neuron DLC

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-40906 – MongoDB BSON Serialization BSON::XS Multiple Vulnerabilities

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    The Role of NLP in Insurance Fraud Detection and Prevention

    Development

    Programmatic approach to optimize the cost of Amazon RDS snapshots

    Databases

    Linus Torvalds Acknowledges Missed Release of Linux 6.14 Due to Oversight

    Learning Resources

    Node 22.5.0 now includes node:sqlite module (22.5.1 bugfix)

    Development

    Highlights

    LincStation S1 Review: A Prebuilt NAS for Tinkerers

    April 7, 2025

    The LincStation S1 is the latest in LincPlus’s budget NAS series, designed to accommodate up…

    Integrate IMAP Into Your PHP Application

    February 10, 2025

    6 Free Artificial Intelligence AI Courses from Google

    April 21, 2024

    Employee Privacy Policy

    June 4, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.