Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»ABodyBuilder3: A Scalable and Precise Model for Antibody Structure Prediction

    ABodyBuilder3: A Scalable and Precise Model for Antibody Structure Prediction

    June 9, 2024

    Accurately predicting antibody structures is essential for developing monoclonal antibodies, pivotal in immune responses and therapeutic applications. Antibodies have two heavy and two light chains, with the variable regions featuring six CDR loops crucial for binding to antigens. The CDRH3 loop presents the greatest challenge due to its diversity. Traditional experimental methods for determining antibody structures are often slow and costly. Consequently, computational techniques such as IgFold, DeepAb, ABlooper, ABodyBuilder, and newer models like xTrimoPGLMAb are emerging as effective tools for precise antibody structure prediction.

    Researchers from Exscientia and the University of Oxford have developed ABodyBuilder3, an advanced model for predicting antibody structures. Building on ABodyBuilder2, this new model enhances the accuracy of predicting CDR loops by integrating language model embeddings. ABodyBuilder3 also improves structure predictions with refined relaxation techniques and introduces a Local Distance Difference Test (pLDDT) to estimate uncertainties more precisely. Key improvements include updates to data curation, sequence representation, and structure refinement processes. These advancements make ABodyBuilder3 a scalable solution for accurately assessing many therapeutic antibody candidates.

    In enhancing antibody structure modeling, researchers developed a more efficient and scalable version of ABodyBuilder2, incorporating vectorization and optimizations from OpenFold. Using mixed precision and bfloat16 for training, they achieved over three times faster performance and efficient memory usage. Training on the Structural Antibody Database (SAbDab), they filtered outliers, ultra-long CDRH3 loops, and low-resolution structures to refine their dataset. They used a large validation and test set focused on human antibodies to improve model robustness. Refinement strategies with OpenMM and YASARA enhanced structural accuracy, particularly in the antibody framework, leading to significant improvements over ABodyBuilder2.

    To improve antibody structure modeling, researchers replaced the one-hot encoding in ABodyBuilder2 with embeddings from the ProtT5 language model, which is pretrained on billions of protein sequences. They generated separate embeddings for the heavy and light chains and combined these for the full variable region. While they tested antibody-specific models like IgT5 and IgBert, general protein language models performed better, likely avoiding issues like dataset contamination and overfitting. Using ProtT5, they set a lower initial learning rate and adjusted the learning rate scheduler for stability. This new model, ABodyBuilder3-LM, showed reduced RMSD, especially for CDRH3 and CDRL3 loops.

    To enhance uncertainty estimation in antibody structure predictions, ABodyBuilder3 replaces the ensemble-based confidence approach of ABodyBuilder2 with per-residue lDDT-Cα scores, as used in AlphaFold2. This method, which predicts accuracy directly from a single model, significantly reduces computational costs. The pLDDT score is calculated by projecting residue-level predictions into bins via a neural network and then comparing them to ground truth structures. This approach improves the correlation between predicted uncertainty and RMSD, especially with ProtT5 embeddings. The model’s pLDDT scores effectively predict the accuracy of CDR regions, with high scores indicating lower RMSD in key areas like CDRH3.

    In conclusion, ABodyBuilder3 is an advanced antibody structure prediction model building on ABodyBuilder2, with key enhancements for improved scalability and accuracy. The model achieves better performance by optimizing hardware usage and refining data processing and structure prediction methods. Incorporating language model embeddings, particularly for the CDRH3 region, and using pLDDT scores for uncertainty estimation replace the need for computationally intensive ensemble models. Future directions could explore self-distillation techniques and pre-training on synthetic datasets to enhance prediction accuracy. Additionally, combining pLDDT with ensemble approaches might improve results despite higher computational demands.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 44k+ ML SubReddit

    The post ABodyBuilder3: A Scalable and Precise Model for Antibody Structure Prediction appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleTop Artificial Intelligence AI Courses from Salesforce
    Next Article Google AI Proposes a Machine Learning Framework for Understanding AI Models in Medical Imaging

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-40906 – MongoDB BSON Serialization BSON::XS Multiple Vulnerabilities

    May 17, 2025
    Leave A Reply Cancel Reply

    Hostinger

    Continue Reading

    WooCommerce Users Targeted by Fake Patch Phishing Campaign Deploying Site Backdoors

    Development

    Best Free and Open Source Alternatives to Apple Music

    Linux

    Craft CMS RCE exploit chain used in zero-day attacks to steal data

    Security
    Razer seemingly halts US laptop sales, including Blade 16, in reaction to new incoming tariffs

    Razer seemingly halts US laptop sales, including Blade 16, in reaction to new incoming tariffs

    News & Updates

    Highlights

    Flyby tracks and predicts passes of satellites in Earth orbit

    April 24, 2025

    Flyby is a console based satellite tracking program that can track a satellite across the…

    Is it possible to automatically aggregate / collect test results from different projects using Serenity BDD?

    August 9, 2024

    Building Generative AI and ML solutions faster with AI apps from AWS partners using Amazon SageMaker

    December 7, 2024

    Massive Mirai Botnet Exploited Zero-Day Vulnerability in AVTECH Cameras

    August 29, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.