Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»SaySelf: A Machine Learning Training Framework That Teaches LLMs To Express More Accurate Fine-Grained Confidence Estimates

    SaySelf: A Machine Learning Training Framework That Teaches LLMs To Express More Accurate Fine-Grained Confidence Estimates

    June 7, 2024

    Language Learning Models (LLMs), which are very good at reasoning and coming up with good answers, are sometimes honest about their mistakes and tend to hallucinate when asked questions they haven’t seen before. When the responses are more than just one token, it becomes much more important to determine how to get trustworthy confidence estimations from LLMs.

    Both training-based and prompting-based approaches have been used in the past to elicit confidence from LLMs. Prompting-based approaches, for instance, use specific prompts to create confidence ratings or answer consistency as a confidence indication. To train LLMs to be confident, training-based methods create tailored datasets for tuning. However, these techniques frequently yield less-than-ideal or simplistic confidence estimates, which do not faithfully represent the models’ degrees of certainty.

    A new study by Purdue University, University of Illinois Urbana-Champaign, University of Southern California, and The Hong Kong University of Science and Technology introduce SaySelf, a training framework for LLMs that helps them produce confidence estimations with increased precision and accuracy. Significantly, unlike earlier work, SaySelf allows LLMs to provide self-reflective rationales that show where they lack knowledge and explain their confidence estimates. To achieve this, the researchers use a pre-made LLM (like GPT4) to automatically generate a dataset tailored to the model, which can then be used for supervised fine-tuning. They take a random sample of several reasoning chains, which are sequences of tokens that represent the LLM’s thought process, from LLMs for every query. After that, the reasoning chains are grouped into clusters according to their semantic similarity, and one example is kept from each grouping.

    From a first-person viewpoint, GPT-4 is asked to examine the cases chosen from different clusters and to summarize the uncertainty about specific knowledge in plain language. The researchers calibrate the confidence estimate of LLMs in each response using reinforcement learning to ensure accurate confidence estimations. They devise a payment system that discourages LLMs from making overconfident predictions and punishes them when they get it wrong. Various knowledge-extensive question-answering tasks, such as complex medical diagnoses or legal case analysis, are used to assess SaySelf in this study’s experiments. The study demonstrates that SaySelf maintains task performance while drastically lowering confidence calibration errors. Further improvement of calibration performance is possible with the developed self-reflective rationales, which also successfully capture the internal uncertainty.

    The following examples are incomplete regarding how this work could impact relevant scholarly investigations and practical applications: (1) From the standpoint of LLMs’ alignment, AI can benefit from a transparent confidence statement that includes explanations. (2) LLMs can improve their interaction and performance by following the self-reflective rationales to execute further activities, such as requesting external tools or asking clarification inquiries. 

    Upon completion of the SaySelf training process, the team hopes to see encouraging advances in training procedures, such as proactive learning algorithms that improve the learning outcomes of LLMs through their interactions with people. 

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 43k+ ML SubReddit | Also, check out our AI Events Platform

    The post SaySelf: A Machine Learning Training Framework That Teaches LLMs To Express More Accurate Fine-Grained Confidence Estimates appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleAppium, clicks on buttons sometimes has a very long delay (on some views)
    Next Article Modeling Cultural Accumulation in Artificial Reinforcement Learning Agents

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-40906 – MongoDB BSON Serialization BSON::XS Multiple Vulnerabilities

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Google is in trouble… but this could change everything – and no, it’s not AI

    News & Updates

    Broadcom adds on-premises version of its enterprise agility platform Rally

    Development

    Must-Have WordPress Plugins for 2024

    Development

    CVE-2025-3974 – PHPGurukul COVID19 Testing Management System SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)
    Hostinger

    Highlights

    Development

    Emerging Trends in Reinforcement Learning: Applications Beyond Gaming

    April 17, 2024

    Reinforcement Learning (RL) is expanding its footprint, finding innovative uses across various industries far beyond…

    Changing dimensions in a data warehouse: How to Test

    December 24, 2024

    Israeli Hackers Claim Responsibility for Internet Disruption in Iran

    August 3, 2024

    Microsoft Fixes ASCII Smuggling Flaw That Enabled Data Theft from Microsoft 365 Copilot

    August 29, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.