Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 14, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 14, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 14, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 14, 2025

      I test a lot of AI coding tools, and this stunning new OpenAI release just saved me days of work

      May 14, 2025

      How to use your Android phone as a webcam when your laptop’s default won’t cut it

      May 14, 2025

      The 5 most customizable Linux desktop environments – when you want it your way

      May 14, 2025

      Gen AI use at work saps our motivation even as it boosts productivity, new research shows

      May 14, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025
      Recent

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025

      Perficient’s “What If? So What?” Podcast Wins Gold at the 2025 Hermes Creative Awards

      May 14, 2025

      PIM for Azure Resources

      May 14, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025
      Recent

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025

      You can now share an app/browser window with Copilot Vision to help you with different tasks

      May 14, 2025

      Microsoft will gradually retire SharePoint Alerts over the next two years

      May 14, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»BioDiscoveryAgent: Revolutionizing Genetic Experiment Design with AI-Powered Insights

    BioDiscoveryAgent: Revolutionizing Genetic Experiment Design with AI-Powered Insights

    June 7, 2024

    Agents based on LLMs hold promise for accelerating scientific discovery, especially in biomedical research. They leverage extensive background knowledge to design and interpret experiments, particularly useful for identifying drug targets through CRISPR-based genetic perturbation. Despite their potential, LLM-based agents have yet to be fully utilized in designing biological experiments. Challenges include balancing freedom in exploring gene perturbations with biological validity, ensuring consistent experimental strategies across prompts, and maintaining decision-making interpretability with literature citations and human feedback. These agents could significantly enhance the efficiency of gene perturbation screens, which are vital for drug discovery and disease mechanism elucidation.

    Stanford University and UCSF researchers have developed BioDiscoveryAgent, an AI tool that designs genetic perturbation experiments without needing a pre-trained machine learning model. Using an LLM and various tools, BioDiscoveryAgent suggests genes to perturb based on prior knowledge and experimental results. It searches scientific literature, analyzes datasets, and critiques its predictions. The agent improves the detection of desired phenotypes by 18% compared to Bayesian optimization methods and accurately predicts gene combinations. Its transparent decision-making process enhances the design of genetic experiments, providing a valuable resource for biomedical research.

    Artificial intelligence has shown promise in various scientific fields, including simulating human behavior and exploring mathematical functions. AI models are effective in mining scientific literature and handling research tasks like data analysis and report generation. Advances in AI-driven lab experiments have been significant, particularly in chemical synthesis and materials discovery. In biology, LLMs capture detailed information about biological pathways and processes and can simulate these processes. AI for generating hypotheses in functional genomics is well-established, addressing the vast experimental space and combinatorial challenges. Previous studies have used machine learning to optimize genetic perturbation experiment designs.

    BioDiscoveryAgent uses the Claude v1 Anthropic LLM to automate scientific discovery in biology. It accesses scientific knowledge, generates hypotheses, plans experiments, and interprets results. At each step, the agent selects a batch of genes for testing, incorporating previous results into the next prompt. BioDiscoveryAgent freely suggests genes, refining the list if needed. Its response format includes Reflection, Research Plan, and Solution, ensuring interpretability. The agent leverages tools like literature search via the PubMed API, gene feature analysis, and a critic agent to refine predictions. This comprehensive approach enhances the design of genetic perturbation experiments by utilizing extensive biological knowledge.

    BioDiscoveryAgent selects batches of genes for testing, incorporating previous results into its prompts. BioDiscoveryAgent surpasses machine learning baselines in 1-gene perturbation experiments by 18% on average, especially in early rounds. It enhances performance by using tools like literature search, gene similarity analysis, and an AI critic. In 2-gene perturbation experiments, it outperforms random sampling by 130%. Integrating prior knowledge and experimental observations improves decision-making, highlighting the importance of both elements. BioDiscoveryAgent’s interpretable predictions, supported by literature references and critical insights, aid in human-in-the-loop feedback.

    In conclusion, BioDiscoveryAgent introduces a new approach to biological experiment design, enhancing scientists’ capabilities by using an LLM to simplify the process into a single prompt. Unlike traditional multi-stage pipelines requiring manual design and retraining, this agent efficiently integrates prior biological knowledge and observational data. It solves the cold start problem and leverages various tools for information from literature and datasets, accelerating research. While effective, it performs variably across cell types and excels mainly in early experimentation stages. BioDiscoveryAgent complements existing methods, enhancing performance in low data regimes and offering improved reasoning and interpretability, making AI crucial in future experimental designs.

    Check out the Paper and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 43k+ ML SubReddit | Also, check out our AI Events Platform

    The post BioDiscoveryAgent: Revolutionizing Genetic Experiment Design with AI-Powered Insights appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleCheckMate: An Adaptable AI Platform for Evaluating Language Models by Their Interactions with Human Users
    Next Article Jina AI Open Sources Jina CLIP: A State-of-the-Art English Multimodal (Text-Image) Embedding Model

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 15, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-30419 – NI Circuit Design Suite SymbolEditor Out-of-Bounds Read Vulnerability

    May 15, 2025
    Leave A Reply Cancel Reply

    Hostinger

    Continue Reading

    Nvidia GeForce RTX 5090s won’t be shipped until February 6, and that’s not good news for scalpers

    Operating Systems

    Enforce row-level security with the RDS Data API

    Databases

    DynamoLLM: An Energy-Management Framework for Sustainable Artificial Intelligence Performance and Optimized Energy Efficiency in Large Language Model (LLM) Inference

    Development

    Birth of Unix

    Linux

    Highlights

    20 Best Free and Open Source Linux Synthesizers

    April 12, 2025

    A software synthesizer, also known as a softsynth, is computer software which creates digital audio.…

    6 Best Front-End Web Development Languages

    January 27, 2025

    Hackers Exploit Google Tag Manager to Deploy Credit Card Skimmers on Magento Stores

    February 10, 2025

    Best Music Visualizer for Windows – 10 Tools for Awesome Visuals

    January 10, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.