Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»InternLM Research Group Releases InternLM2-Math-Plus: A Series of Math-Focused LLMs in Sizes 1.8B, 7B, 20B, and 8x22B with Enhanced Chain-of-Thought, Code Interpretation, and LEAN 4 Reasoning

    InternLM Research Group Releases InternLM2-Math-Plus: A Series of Math-Focused LLMs in Sizes 1.8B, 7B, 20B, and 8x22B with Enhanced Chain-of-Thought, Code Interpretation, and LEAN 4 Reasoning

    May 29, 2024

    The InternLM research team delves into developing and enhancing large language models (LLMs) specifically designed for mathematical reasoning and problem-solving. These models are crafted to bolster artificial intelligence’s capabilities in tackling intricate mathematical tasks, encompassing formal proofs and informal problem-solving.

    Researchers have noted that current AI models often need to catch up regarding the depth and precision required for complex mathematical computations and logical proofs. The need for improved performance in mathematical reasoning by AI is crucial, as existing models need help to match the accuracy and efficiency required for more sophisticated tasks.

    Traditional methods for training these models involve extensive datasets of mathematical problems and solutions. Techniques like chain-of-thought and program-of-thought reasoning help simulate humans’ step-by-step processes to solve mathematical problems. However, these approaches often need more efficiency and precision for more complex mathematical tasks, underscoring the necessity for innovative solutions.

    Researchers from Shanghai AI Laboratory, Tsinghua University, Fudan University, University of Southern California, and Shanghai Jiaotong University have introduced the InternLM2-Math-Plus. This model series includes variants with 1.8B, 7B, 20B, and 8x22B parameters, tailored to improve informal and formal mathematical reasoning through enhanced training techniques and datasets. These models aim to bridge the gap in performance and efficiency in solving complex mathematical tasks.

    The four variants of InternLM2-Math-Plus introduced by the research team:

    InternLM2-Math-Plus 1.8B: This variant focuses on providing a balance between performance and efficiency. It has been pre-trained and fine-tuned to handle informal and formal mathematical reasoning, achieving scores of 37.0 on MATH, 41.5 on MATH-Python, and 58.8 on GSM8K, outperforming other models in its size category.

    InternLM2-Math-Plus 7B: Designed for more complex problem-solving tasks, this model significantly improves over state-of-the-art open-source models. It achieves 53.0 on MATH, 59.7 on MATH-Python, and 85.8 on GSM8K, demonstrating enhanced informal and formal mathematical reasoning capabilities.

    InternLM2-Math-Plus 20B: This variant pushes the boundaries of performance further, making it suitable for highly demanding mathematical computations. It achieves scores of 53.8 on MATH, 61.8 on MATH-Python, and 87.7 on GSM8K, indicating its robust performance across various benchmarks.

    InternLM2-Math-Plus Mixtral8x22B: The largest and most powerful variant, Mixtral8x22B, delivers unparalleled accuracy and precision. It scores 68.5 on MATH and an impressive 91.8 on GSM8K, making it the preferred choice for the most challenging mathematical tasks due to its extensive parameters and superior performance.

    The InternLM2-Math-Plus models incorporate advanced techniques such as chain-of-thought reasoning, reward modeling, and a code interpreter. The models are pre-trained on diverse, high-quality mathematical data, including synthetic data for numerical operations and domain-specific datasets. Further fine-tuning through supervised learning on curated datasets enhances their problem-solving and verification abilities.

    Image Source

    Regarding performance, the InternLM2-Math-Plus models show significant improvement over existing models. The 1.8B model, for example, outperforms the MiniCPM-2B in the smallest size category. Similarly, the 7B model surpasses the Deepseek-Math-7B-RL, previously state-of-the-art open-source math reasoning models. Notably, the largest model, Mixtral8x22B, achieves top scores on MATH and GSM8K, indicating superior problem-solving capabilities.

    The InternLM2-Math-Plus 1.8B model shows notable performance improvements with scores of 37.0 on MATH, 41.5 on MATH-Python, and 58.8 on GSM8K. The 7B variant enhances these results further, achieving 53.0 on MATH, 59.7 on MATH-Python, and 85.8 on GSM8K. The 20B model also performs impressively, scoring 53.8 on MATH, 61.8 on MATH-Python, and 87.7 on GSM8K. The largest model, Mixtral8x22B, achieves 68.5 on MATH and 91.8 on GSM8K.

    Image Source

    Each variant of InternLM2-Math-Plus is designed to address specific needs in mathematical reasoning. The 1.8B model balances performance and efficiency, which is ideal for applications requiring robust yet compact models. The 7B model provides enhanced capabilities for more complex problem-solving tasks. The 20B model further pushes the boundaries of performance, making it suitable for highly demanding mathematical computations. The Mixtral8x22B model, with its extensive parameters, delivers unparalleled accuracy and precision, making it the go-to choice for the most challenging mathematical tasks.

    In conclusion, the research on InternLM2-Math-Plus signifies a substantial advancement in the mathematical reasoning capabilities of LLMs. The models effectively address key challenges by integrating sophisticated training techniques and leveraging extensive datasets, enhancing performance on various mathematical benchmarks. 

    Sources

    https://arxiv.org/pdf/2402.06332

    https://x.com/intern_lm/status/1795043367383859523

    https://github.com/InternLM/InternLM-Math

    https://huggingface.co/internlm/internlm2-math-plus-1_8b/

    https://huggingface.co/internlm/internlm2-math-plus-7b/

    https://huggingface.co/internlm/internlm2-math-plus-20b/

    https://huggingface.co/internlm/internlm2-math-plus-mixtral8x22b/

    The post InternLM Research Group Releases InternLM2-Math-Plus: A Series of Math-Focused LLMs in Sizes 1.8B, 7B, 20B, and 8x22B with Enhanced Chain-of-Thought, Code Interpretation, and LEAN 4 Reasoning appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleFrom Noisy Hypotheses to Clean Text: How Denoising LM (DLM) Improves Speech Recognition Accuracy
    Next Article Massive Google Leak Exposes Search Algorithm Secrets

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47916 – Invision Community Themeeditor Remote Code Execution

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    CVE-2025-4323 – Apache MRCMS Cross Site Scripting Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    North Korean Hackers Shift from Cyber Espionage to Ransomware Attacks

    Development

    What Are Logs in Programming?

    Development

    Meta AI Introduces CLUE (Constitutional MLLM JUdgE): An AI Framework Designed to Address the Shortcomings of Traditional Image Safety Systems

    Machine Learning

    Highlights

    Development

    The 7 best new Elden Ring DLC builds I’m using with Shadow of the Erdtree weapons, spells, and more

    July 6, 2024

    Here are seven of the best Elden Ring DLC builds I’ve put together using Shadow…

    From Softmax to SSMax: Enhancing Attention and Key Information Retrieval in Transformers

    February 4, 2025

    The AI Fix #36: A DeepSeek special

    February 4, 2025

    Display the Array in JMeter

    July 3, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.