Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 14, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 14, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 14, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 14, 2025

      I test a lot of AI coding tools, and this stunning new OpenAI release just saved me days of work

      May 14, 2025

      How to use your Android phone as a webcam when your laptop’s default won’t cut it

      May 14, 2025

      The 5 most customizable Linux desktop environments – when you want it your way

      May 14, 2025

      Gen AI use at work saps our motivation even as it boosts productivity, new research shows

      May 14, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025
      Recent

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025

      Perficient’s “What If? So What?” Podcast Wins Gold at the 2025 Hermes Creative Awards

      May 14, 2025

      PIM for Azure Resources

      May 14, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025
      Recent

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025

      You can now share an app/browser window with Copilot Vision to help you with different tasks

      May 14, 2025

      Microsoft will gradually retire SharePoint Alerts over the next two years

      May 14, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Inductive Biases in Deep Learning: Understanding Feature Representation

    Inductive Biases in Deep Learning: Understanding Feature Representation

    May 28, 2024

    Machine learning research aims to learn representations that enable effective downstream task performance. A growing subfield seeks to interpret these representations’ roles in model behaviors or modify them to enhance alignment, interpretability, or generalization. Similarly, neuroscience examines neural representations and their behavioral correlations. Both fields focus on understanding or improving system computations, abstract behavior patterns on tasks, and their implementations. The relationship between representation and computation is complex and needs to be more straightforward.

    Highly over-parameterized deep networks often generalize well despite their capacity for memorization, suggesting an implicit inductive bias towards simplicity in their architectures and gradient-based learning dynamics. Networks biased towards simpler functions facilitate easier learning of simpler features, which can impact internal representations even for complex features. Representational biases favor simple, common features influenced by factors such as feature prevalence and output position in transformers. Shortcut learning and disentangled representation research highlight how these biases affect network behavior and generalization.

    In this work, DeepMind researchers investigate dissociations between representation and computation by creating datasets that match the computational roles of features while manipulating their properties. Various deep learning architectures are trained to compute multiple abstract features from inputs. Results show systematic biases in feature representation based on properties like feature complexity, learning order, and feature distribution. Simpler or earlier-learned features are more strongly represented than complex or later-learned ones. These biases are influenced by architectures, optimizers, and training regimes, such as transformers favoring features decoded earlier in the output sequence.

    Their approach involves training networks to classify multiple features either through separate output units (e.g., MLP) or as a sequence (e.g., Transformer). The datasets are constructed to ensure statistical independence among features, with models achieving high accuracy (>95%) on held-out test sets, confirming the correct computation of features. The study investigates how properties such as feature complexity, prevalence, and position in the output sequence affect feature representation. Families of training datasets are created to systematically manipulate these properties, with corresponding validation and test datasets ensuring expected generalization.

    Training various deep learning architectures to compute multiple abstract features reveals systematic biases in feature representation. These biases depend on extraneous properties like feature complexity, learning order, and feature distribution. Simpler or earlier-learned features are represented more strongly than complex or later-learned ones, even if all are learned equally well. Architectures, optimizers, and training regimes, such as transformers, also influence these biases. These findings characterize the inductive biases of gradient-based representation learning and highlight challenges in disentangling extraneous biases from computationally important aspects for interpretability and comparison with brain representations.

    In this work, researchers trained deep learning models to compute multiple input features, revealing substantial biases in their representations. These biases depend on feature properties like complexity, learning order, dataset prevalence, and output sequence position. Representational biases may relate to implicit inductive biases in deep learning. Practically, these biases pose challenges for interpreting learned representations and comparing them across different systems in machine learning, cognitive science, and neuroscience.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 43k+ ML SubReddit | Also, check out our AI Events Platform

    The post Inductive Biases in Deep Learning: Understanding Feature Representation appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow to delete cypress reports for both windows and linux before every run?
    Next Article The Rise of Agentic Retrieval-Augmented Generation (RAG) in Artificial Intelligence AI

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 15, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-30419 – NI Circuit Design Suite SymbolEditor Out-of-Bounds Read Vulnerability

    May 15, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    This AI Paper Introduces Toto: Autoregressive Video Models for Unified Image and Video Pre-Training Across Diverse Tasks

    Machine Learning

    Randomize Command Execution Time with the Chaotic Schedule Package for Laravel

    Development

    SOC 3.0 – The Evolution of the SOC and How AI is Empowering Human Talent

    Development

    Cybercriminals Exploit Popular Software Searches to Spread FakeBat Malware

    Development

    Highlights

    Development

    Urgent: Critical WordPress Plugin Vulnerability Exposes Over 4 Million Sites

    November 18, 2024

    A critical authentication bypass vulnerability has been disclosed in the Really Simple Security (formerly Really…

    High Tide is a Promising New Linux TIDAL Client

    January 30, 2025

    CVE-2025-47578 – Twitter Follow Button Cross-site Scripting Vulnerability

    May 12, 2025

    Account Credentials for Security Vendors Found on Dark Web

    January 22, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.