Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Advancements in Knowledge Distillation and Multi-Teacher Learning: Introducing AM-RADIO Framework

    Advancements in Knowledge Distillation and Multi-Teacher Learning: Introducing AM-RADIO Framework

    May 15, 2024

    Knowledge Distillation has gained popularity for transferring the expertise of a “teacher” model to a smaller “student” model. Initially, an iterative learning process involving a high-capacity model is employed.  The student, with equal or greater capacity, is trained with extensive augmentation. Subsequently, the trained student expands the dataset through pseudo-labeling new data. Notably, the student can surpass the teacher’s performance. Ensemble distillation, involving multiple teachers with restricted domain knowledge, has also been explored.

    Recently, Foundation Models (FMs) have emerged as large, general models trained on vast datasets, exemplified by CLIP and DINOv2, showcasing remarkable zero-shot performances in computer vision tasks. SAM is noted for its instance segmentation capabilities, attributed to its strong dense feature representations. Despite their conceptual differences, these models can be effectively merged into a unified model through multi-teacher distillation.

    Knowledge Distillation involves training a “student” model using soft targets generated by a pre-trained “teacher” model, either through the teacher’s output logits or intermediate network activations. Multi-Teacher Distillation explores jointly distilling a student model from multiple teachers, with each student mapped independently to each teacher. Also, Foundation Models, large and resource-intensive, are distilled to train smaller variants, as demonstrated in prior research works.

    NVIDIA researchers present AM-RADIO to utilize multiple foundational models simultaneously, enabling student models, given sufficient capacity, to surpass individual teachers on crucial metrics. These student models mimic their teachers, facilitating performance on various downstream tasks, including CLIP-ZeroShot applications and Segment-Anything tasks. Also, they provide a study that evaluates the impact of hardware-efficient model architectures, highlighting the challenge of distilling ViT VFMs with CNN-like architectures. Which led to the development of a novel hybrid architecture E-RADIO, outperforming predecessors and exhibiting superior efficiency.

    AM-RADIO framework aims to train a vision foundation model from scratch through multi-teacher distillation. Three seminal teacher model families, CLIP, DINOv2, and SAM, are selected for their outstanding performance across various tasks. Given the assumption that these teacher models represent a broad spectrum of internet images, no supplemental ground truth guidance is used. Evaluation metrics encompass image-level reasoning, pixel-level visual tasks such as segmentation mIOU on ADE20K and Pascal VOC, integration into large Vision-Language Models, and SAM-COCO instance segmentation.

    E-RADIO surpasses original teachers like CLIP, DINOv2, and SAM in various tasks including vision question answering. E-RADIO demonstrates superior performance across multiple benchmarks, exhibiting higher throughput and improved efficiency. Also, it outperforms ViT models in dense tasks such as semantic segmentation and instance segmentation. The framework’s flexibility is highlighted by its successful integration into visual question-answering setups, underscoring its potential for diverse applications.

    To recapitulate, Knowledge Distillation has become a prominent technique for transferring knowledge from a “teacher” to a smaller “student” model, surpassing the teacher’s performance. This approach has extended to ensemble distillation and Foundation Models (FMs) like CLIP and DINOv2, known for their zero-shot capabilities and instance segmentation prowess. NVIDIA introduces AM-RADIO, utilizing multiple foundational models simultaneously, outperforming original teachers like CLIP and DINOv2. E-RADIO, a novel hybrid architecture, emerges to address the challenge of distilling FMs with CNN-like architectures. Through multi-teacher distillation, AM-RADIO trains a vision foundation model from scratch, demonstrating superior performance in various tasks, including vision question answering and instance segmentation.

    Check out the Paper and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 42k+ ML SubReddit

    The post Advancements in Knowledge Distillation and Multi-Teacher Learning: Introducing AM-RADIO Framework appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMeet Inspect: The Latest AI Safety Evaluations Platform Introduced By UK’s AI Safety Institute 
    Next Article Marker: A New Python-based Library that Converts PDF to Markdown Quickly and Accurately

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47916 – Invision Community Themeeditor Remote Code Execution

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    French Authorities Seized Nearly $6M in Child Sexual Abuse and Drug Dealing Platform Takedown

    Development

    CVE-2025-45015 – PHPGurukul Park Ticketing Management System Cross-Site Scripting (XSS)

    Common Vulnerabilities and Exposures (CVEs)

    CES 2025: The 7 most advanced smart glasses we tried on – and loved

    News & Updates

    Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models

    Machine Learning

    Highlights

    SwiftUI Views & Layouts [SUBSCRIBER]

    June 25, 2024

    <p>This lesson will walk you through building your own custom views, configuring app layouts in…

    This is the power bank I recommend to most laptop users – even if you’re on a MacBook Pro

    February 12, 2025

    CVE-2025-30165 – vLLM ZeroMQ Remote Code Execution Vulnerability

    May 6, 2025

    From Craft to Curation: Design Leadership in the Age of AI

    March 24, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.