Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»MaRDIFlow: Automating Metadata Abstraction for Enhanced Reproducibility in Computational Workflows

    MaRDIFlow: Automating Metadata Abstraction for Enhanced Reproducibility in Computational Workflows

    May 8, 2024

    The integration of data-intensive computational studies is vital across scientific disciplines. Computational workflows systematically outline methods, data, and computing resources. With complex simulation models and vast data volumes, Computational Sciences and Engineering (CSE) workflows facilitate research beyond simulations, enabling analysis of diverse data and methodologies. FAIR principles ensure research data are Findable, Accessible, Interoperable, and Reusable, guiding data stewardship. While CSE workflows are documented, inclusive abstract descriptions still need to be included. Emerging tools like Jupyter notebooks and Code Ocean facilitate documentation and integration, while automated workflows aim to merge computer-based and laboratory computations.

    The challenge of reproducibility in computational workflows requires thorough examination. While popular for documenting and executing workflows, Jupyter’s design limitations, such as undocumented libraries and linear structure, hinder full reproducibility. Alternative tools like CWL and Galaxy offer advanced workflow management for various domains but also have limitations. FMI’s container-based approach aids in replicating simulations but requires metadata for broader reproducibility and adaptation.

    Researchers from the Max Planck Institute for Dynamics of Complex Technical Systems introduce MaRDIFlow, a robust computational framework aiming to automate metadata abstraction within an ontology of mathematical objects. MaRDIFlow addresses execution and environmental dependencies through multi-layered descriptions. A prototype is developed, showcasing use cases and integration into a workflow tool and data provenance framework. Also, the researchers demonstrated the application of FAIR principles to computational workflows, ensuring abstracted components are Findable, Accessible, Interoperable, and Reusable.

    MaRDIFlow’s design principle revolves around treating components as abstract objects defined by their input-output behavior and metadata. These objects are chained together based on metadata and matching I/O interfaces, forming a workflow. Different realizations of each item provide redundancy and flexibility. This multi-level description enhances reproducibility, accommodating scenarios where software components may be unavailable. The working prototype, accessible via command line, enables execution, documentation, and provenance maintenance for computer-based experiments, facilitating reproducibility and replication.

    The current version of MaRDIFlow serves as a command-line tool, allowing users to manage workflow components as abstract objects based on input-output behavior. It ensures detailed output and comprehensive descriptions to aid in reproducing computational experiments. Use cases, such as CO2 conversion rates and spinodal decomposition, demonstrate its functionality while adhering to FAIR principles. Ongoing development aims to address diverse use cases in mathematical sciences. Also, plans include developing an Electronic Lab Notebook (ELN) to visualize and execute MaRDIFlow, providing researchers with a user-friendly interface for efficient interaction.

    To conclude, This study introduces MaRDIFlow, a robust computational workflow framework prototype. MaRDIFlow automates the abstraction of metadata within a mathematical object ontology, mitigating underlying execution and environmental dependencies through multi-layered vertical descriptions. Components are defined by their input-output relations, allowing for interchangeable and often redundant use. This approach enhances flexibility and reproducibility in computational experiments.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 41k+ ML SubReddit

    The post MaRDIFlow: Automating Metadata Abstraction for Enhanced Reproducibility in Computational Workflows appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleAI21 Labs Introduces Jamba-Instruct Model: An Instruction-Tuned Version of Their Hybrid SSM-Transformer Jamba Model
    Next Article Use Kerberos authentication with Amazon Aurora MySQL

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47916 – Invision Community Themeeditor Remote Code Execution

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    CVE-2025-4712 – Campcodes Sales and Inventory System SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    SQL Commands: The List of Basic SQL Language Commands

    Development

    Chrome tests New Page Contextual Search in desktop address bar

    Operating Systems

    Table/Cards views with animated transitions (JS+CSS w/out dependencies).

    Development

    Highlights

    News & Updates

    Microsoft 365 Copilot’s new app icon is so bad, it’s actually illegible on certain displays

    January 21, 2025

    Microsoft 365 Copilot’s new icon is lazy, and on low-DPI screens is almost impossible to…

    2024 Webflow Conf Schedule is Here!

    August 22, 2024

    How to Split Data with Newline Characters into Separate Rows in Excel Using Power Query

    April 3, 2025

    How to Dockerize a React App: A Step-by-Step Guide for Developers

    March 16, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.