Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»PLAN-SEQ-LEARN: A Machine Learning Method that Integrates the Long-Horizon Reasoning Capabilities of Language Models with the Dexterity of Learned Reinforcement Learning RL Policies

    PLAN-SEQ-LEARN: A Machine Learning Method that Integrates the Long-Horizon Reasoning Capabilities of Language Models with the Dexterity of Learned Reinforcement Learning RL Policies

    May 6, 2024

    The robotics research field has significantly transformed by integrating large language models (LLMs). These advancements have presented an opportunity to guide robotic systems in solving complex tasks that involve intricate planning and long-horizon manipulation. While robots have traditionally relied on predefined skills and specialized engineering, recent developments show potential in using LLMs to help guide reinforcement learning (RL) policies, bridging the gap between abstract high-level planning and detailed robotic control. The challenge remains in translating these models’ sophisticated language processing capabilities into actionable control strategies, especially in dynamic environments involving complex interactions.

    Robotic manipulation tasks often require executing a series of finely tuned behaviors, and current robotic systems struggle with the long-horizon planning needed for these tasks due to limitations in low-level control and interaction, particularly in dynamic or contact-rich environments. Existing tools, such as end-to-end RL or hierarchical methods, attempt to address the gap between LLMs and robotic control but often suffer from limited adaptability or significant challenges in handling contact-rich tasks. The primary problem revolves around efficiently translating abstract language models into practical robotic control, traditionally limited by LLMs’ inability to generate low-level control.

    The Plan-Seq-Learn (PSL) framework by researchers from Carnegie Mellon University and Mistral AI is introduced as a modular solution to address this gap, integrating LLM-based planning for guiding RL policies in solving long-horizon robotic tasks. PSL decomposes tasks into three stages: high-level language planning (Plan), motion planning (Seq), and RL-based learning (Learn). This allows PSL to handle both contact-free motion and complex interaction strategies. The PSL system leverages off-the-shelf vision models to identify the target regions of interest based on high-level language input, providing a structured plan for sequencing the robot’s actions through motion planning.

    PSL uses an LLM to generate a high-level plan that sequences robot actions through motion planning. Vision models help predict regions of interest, allowing the sequencing module to identify target states for the robot to achieve. The motion planning component drives the robot to these states, and the RL policy takes over to perform the required interactions. This modular approach allows RL policies to refine and adapt control strategies based on real-time feedback, enabling a robotic system to navigate complex tasks. The research team demonstrated PSL across 25 complex robotics tasks, including contact-rich manipulation tasks and long-horizon control tasks involving up to 10 stages. This involved tasks with up to 10 sequential stages requiring up to 10 separate robotic sub-tasks.

    PSL achieved a success rate above 85%, significantly outperforming existing methods like SayCan and MoPA-RL. This was particularly evident in contact-rich tasks, where PSL’s modular approach enabled robots to adapt to unexpected conditions in real-time, efficiently solving the complex interactions required. The flexibility of the PSL framework allows for a modular combination of planning, motion, and learning, enabling it to handle different types of tasks from a wide range of robotics benchmarks. By sharing RL policies across all stages of a task, PSL achieved remarkable efficiency in training speed and task performance, outstripping methods like E2E and RAPS.

    In conclusion, the research team demonstrated the effectiveness of PSL in leveraging LLMs for high-level planning, sequencing motions using vision models, and refining control strategies through RL. PSL achieves a delicate balance of efficiency and precision in translating abstract language goals into practical robotic control. Modular planning and real-time learning make PSL a promising framework for future robotics applications, enabling robots to navigate complex tasks involving multi-step plans.

    Check out the Paper and Project. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 41k+ ML SubReddit

    The post PLAN-SEQ-LEARN: A Machine Learning Method that Integrates the Long-Horizon Reasoning Capabilities of Language Models with the Dexterity of Learned Reinforcement Learning RL Policies appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleNVIDIA AI Open-Sources ‘NeMo-Aligner’: Transforming Large Language Model Alignment with Efficient Reinforcement Learning
    Next Article Predibase Researchers Present a Technical Report of 310 Fine-tuned LLMs that Rival GPT-4

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2024-47893 – VMware GPU Firmware Memory Disclosure

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    STALKER 2’s 1.4 patch has arrived with over 700 gameplay fixes and improvements to enemy AI

    News & Updates

    Last Week in AI #272: Google’s AI search blunders, Unveiling AI’s ‘Black Box’, Scarlett Johansson vs OpenAI’s, and more!

    Artificial Intelligence

    Helldivers 2 players are in the middle of a wild “Station 81” ARG that’s doubtlessly teasing a new update, and you can help solve it

    News & Updates

    Is AGI finally in OpenAI’s grasp? The ChatGPT maker reportedly wants to scrap a stringent clause — extending its Microsoft tie-up beyond AGI and securing more investment for exorbitant AI advances

    Development
    Hostinger

    Highlights

    Development

    CISA Flags Critical Security Flaws in PTZOptics Cameras, Urges Swift Action by Federal Agencies

    November 5, 2024

    The Cybersecurity and Infrastructure Security Agency (CISA) has added two newly discovered vulnerabilities to its…

    Exploring Statistical Analysis with R and Linux

    January 13, 2025

    Salesforce Agentforce 2.0: Pioneering the Next Wave of Enterprise AI Development

    December 23, 2024
    Complete Guide: Working with CSV/Excel Files and EDA in Python

    Complete Guide: Working with CSV/Excel Files and EDA in Python

    April 11, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.