Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Advancing Time Series Forecasting: The Impact of Bi-Mamba4TS’s Bidirectional State Space Modeling on Long-Term Predictive Accuracy

    Advancing Time Series Forecasting: The Impact of Bi-Mamba4TS’s Bidirectional State Space Modeling on Long-Term Predictive Accuracy

    April 27, 2024

    Time series forecasting is increasingly vital across numerous sectors, such as meteorology, finance, and energy management. Its relevance has grown as organizations aim to predict future trends and patterns more accurately. This type of forecasting is instrumental in enhancing decision-making processes and optimizing resource allocation over long periods. However, making accurate long-term forecasts is complex due to the inherently unpredictable nature of the datasets involved and the substantial computational resources required for processing them.

    Historically, recurrent neural networks (RNNs) and convolutional neural networks (CNNs) have been employed to manage these predictions. While RNNs are adept at processing data sequentially, they often fall short in speed and struggle with long-term dependencies. CNNs, alternatively, can process data in parallel, which speeds up training times but at the cost of missing out on capturing long-term dependencies effectively. Recent advancements have seen the implementation of Transformer models, which address some of these issues by using self-attention mechanisms to map relationships in data across time. However, these computationally intensive models limit their utility for long-term forecasting.

    Researchers from Beijing University of Posts and Telecommunications, China, present Bi-Mamba4TS, a novel approach utilizing a bidirectional Mamba model for time series forecasting. This model integrates the state space model (SSM) framework with a bidirectional architecture, enhancing its ability to effectively process and forecast from large time series datasets. The Bi-Mamba4TS model stands out by using patching techniques to enrich the local information content of time series data, enabling it to capture evolutionary patterns with finer granularity.

    Bi-Mamba4TS operates by tokenizing input data through channel-mixing or channel-independent strategies tailored to the data’s characteristics. This flexible approach allows the model to adapt its processing strategy to maximize accuracy and efficiency. The model’s performance has been rigorously tested across multiple datasets, showing a notable improvement in forecasting accuracy. For example, the model consistently outperformed traditional and newer forecasting methods in various datasets such as weather, traffic, and electricity by significantly reducing mean squared errors (MSE) and mean absolute errors (MAE).

    The results from extensive testing show that Bi-Mamba4TS achieves superior forecasting performance. On seven widely used real-world datasets, the model enhanced the predictive accuracy with lower MSE and MAE scores and demonstrated its ability to handle different data complexities effectively. For instance, in tests involving weather and traffic data, the model’s bidirectional approach allowed it to excel in capturing the intricate dependencies within multivariate time series, reducing MSE by up to 4.92% and MAE by 2.16% on average compared to the best existing Transformer models.

    In conclusion, the research on Bi-Mamba4TS addresses the significant challenges in long-term time series forecasting by introducing an innovative bidirectional Mamba model. This method enhances computational efficiency and predictive accuracy through sophisticated patch-wise tokenization techniques, adapting to various data characteristics.

    This breakthrough sets a new standard in forecasting technology, offering a powerful tool for researchers and industries reliant on precise long-term predictions.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    The post Advancing Time Series Forecasting: The Impact of Bi-Mamba4TS’s Bidirectional State Space Modeling on Long-Term Predictive Accuracy appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThe Representative Capacity of Transformer Language Models LMs with n-gram Language Models LMs: Capturing the Parallelizable Nature of n-gram LMs
    Next Article Compare 2 JDBC response in Jmeter

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47916 – Invision Community Themeeditor Remote Code Execution

    May 16, 2025
    Leave A Reply Cancel Reply

    Hostinger

    Continue Reading

    How to Budget Smartly for Your First AI Project: A Step-by-Step Guide💡

    Web Development

    CISA and FBI Raise Alerts on Exploited Flaws and Expanding HiatusRAT Campaign

    Development

    Getting Started with Trivy: A Must-Have Tool for DevSecOps

    Linux

    0xc004f050 Windows 11 Activation Error (Fixed)

    Operating Systems

    Highlights

    Databases

    O Atlas Stream Processing foi lançado em disponibilidade geral!

    May 2, 2024

    Temos o prazer de anunciar que o Atlas Stream Processing – a forma nativa do…

    How can I format the current date and time and then use them in a variable in GoTest?

    July 12, 2024

    A Beginner’s Perspective on Generative AI

    December 30, 2024

    Activepieces is business automation software

    April 28, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.