Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»MuPT: A Series of Pre-Trained AI Models for Symbolic Music Generation that Sets the Standard for Training Open-Source Symbolic Music Foundation Models

    MuPT: A Series of Pre-Trained AI Models for Symbolic Music Generation that Sets the Standard for Training Open-Source Symbolic Music Foundation Models

    April 21, 2024

    In the ever-expanding landscape of artificial intelligence, Large Language Models (LLMs) have emerged as versatile tools, making significant strides across various domains. As they venture into multimodal realms like visual and auditory processing, their capacity to comprehend and represent complex data, from images to speech, becomes increasingly indispensable. Nevertheless, this expansion brings forth many challenges, particularly in developing efficient tokenization techniques for diverse data types, such as images, videos, and audio streams.

    Among the myriad applications of LLMs, the domain of music poses unique challenges that necessitate innovative approaches. Despite achieving remarkable musical performance, these models often need to improve in capturing the structural coherence crucial for aesthetically pleasing compositions. The reliance on the Musical Instrument Digital Interface (MIDI) presents inherent limitations, hindering musical structures’ readability and faithful representation.

    Addressing these challenges, a team of researchers, including M-A-P, University of Waterloo, HKUST, University of Manchester, and many others, have proposed integrating ABC notation, offering a promising alternative to overcome the constraints imposed by MIDI formats. Advocates for this approach highlight ABC notation’s inherent readability and structural coherence, underscoring its potential to enhance the fidelity of musical representations. By fine-tuning LLMs with ABC notation and leveraging techniques like instruction tuning, researchers aim to elevate the models’ musical output capabilities.

    Their ongoing research extends beyond mere adaptation to proposing a standardized training approach tailored explicitly for symbolic music generation tasks. By employing transformer decoder-only architecture, suitable for both single and multi-track music generation, they aim to tackle inherent discrepancies in representing musical measures. Their proposed SMT-ABC notation facilitates a deeper understanding of each measure’s expression across multiple tracks, mitigating issues stemming from the traditional ‘next-token-prediction’ paradigm.

    Furthermore, their investigation reveals that additional training epochs yield tangible benefits for the ABC Notation model, indicating a positive correlation between repeated data exposure and model performance. They introduce the SMS Law to elucidate this phenomenon, which explores how scaling up training data influences model performance, particularly concerning validation loss. Their findings provide valuable insights into optimizing training strategies for symbolic music generation models, paving the way for enhanced musical fidelity and creativity in AI-generated compositions.

    Their research underscores the importance of continuous innovation and refinement in developing AI models for music generation. By delving into the nuances of symbolic music representation and training methodologies, they strive to push the boundaries of what is achievable in AI-generated music. Through ongoing exploration of novel tokenization techniques, such as ABC notation, and meticulous optimization of training processes, they aim to unlock new levels of structural coherence and expressive richness in AI-generated compositions. Ultimately, their efforts not only contribute to advancing the field of AI in music but also hold the promise of enhancing human-AI collaboration in creative endeavors, ushering in a new era of musical exploration and innovation.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    For Content Partnership, Please Fill Out This Form Here..

    The post MuPT: A Series of Pre-Trained AI Models for Symbolic Music Generation that Sets the Standard for Training Open-Source Symbolic Music Foundation Models appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleTransforming Partial Differential Equations PDE Solutions with ‘TENG’: Harnessing Machine Learning for Enhanced Accuracy and Efficiency
    Next Article Intelligent Automation in QSR: From Order to Delivery

    Related Posts

    Machine Learning

    LLMs Struggle with Real Conversations: Microsoft and Salesforce Researchers Reveal a 39% Performance Drop in Multi-Turn Underspecified Tasks

    May 17, 2025
    Machine Learning

    This AI paper from DeepSeek-AI Explores How DeepSeek-V3 Delivers High-Performance Language Modeling by Minimizing Hardware Overhead and Maximizing Computational Efficiency

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    La Germania si impegna ad adottare l’Open Document Format

    Linux

    Linux Candy: Hidamari is fun video wallpaper for Linux

    Linux

    Ferretv2: An Improved Baseline for Referring and Grounding

    Development

    How to Automate the fields that are text and drop downs. You are not sure that how may fields will be and of which type (text/drop down.)

    Development

    Highlights

    Artificial Intelligence

    Generating audio for video

    May 13, 2025

    Video-to-audio research uses video pixels and text prompts to generate rich soundtracks Source: Read More 

    Using AI to spark connections at a conference

    June 12, 2024

    DistroWatch Weekly, Issue 1077

    June 30, 2024

    Hands Off Protest Anti-Trump and Elon Musk Shirt

    April 6, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.