Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 14, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 14, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 14, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 14, 2025

      I test a lot of AI coding tools, and this stunning new OpenAI release just saved me days of work

      May 14, 2025

      How to use your Android phone as a webcam when your laptop’s default won’t cut it

      May 14, 2025

      The 5 most customizable Linux desktop environments – when you want it your way

      May 14, 2025

      Gen AI use at work saps our motivation even as it boosts productivity, new research shows

      May 14, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025
      Recent

      Strategic Cloud Partner: Key to Business Success, Not Just Tech

      May 14, 2025

      Perficient’s “What If? So What?” Podcast Wins Gold at the 2025 Hermes Creative Awards

      May 14, 2025

      PIM for Azure Resources

      May 14, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025
      Recent

      Windows 11 24H2’s Settings now bundles FAQs section to tell you more about your system

      May 14, 2025

      You can now share an app/browser window with Copilot Vision to help you with different tasks

      May 14, 2025

      Microsoft will gradually retire SharePoint Alerts over the next two years

      May 14, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»This AI Research from China Provides Empirical Evidence on the Relationship between Compression and Intelligence

    This AI Research from China Provides Empirical Evidence on the Relationship between Compression and Intelligence

    April 19, 2024

    Many people think that intelligence and compression go hand in hand, and some experts even go so far as to say that the two are essentially the same. Recent developments in LLMs and their effects on AI make this idea much more appealing, prompting researchers to look at language modeling through the compression lens. Theoretically, compression allows for converting any prediction model into a lossless compressor and inversely. Since LLMs have proven themselves to be quite effective in compressing data, language modeling might be thought of as a type of compression.

    For the present LLM-based AI paradigm, this makes the case that compression leads to intelligence all the more compelling. However, there is still a dearth of data demonstrating a causal link between compression and intelligence, even though this has been the subject of much theoretical debate. Is it a sign of intelligence if a language model can encode a text corpus with fewer bits in a lossless manner? That is the question that a groundbreaking new study by Tencent and The Hong Kong University of Science and Technology aims to address empirically. Their study takes a pragmatic approach to the concept of “intelligence,” concentrating on the model’s capability to do different downstream tasks rather than straying into philosophical or even contradictory ground. Three main abilities—knowledge and common sense, coding, and mathematical reasoning—are used to test intelligence.

    To be more precise, the team tested the efficacy of different LLMs in compressing external raw corpora in the relevant domain (e.g., GitHub code for coding skills). Then, they use the average benchmark scores to determine the domain-specific intelligence of these models and test them on various downstream tasks. 

    Researchers establish an astonishing result based on studies with 30 public LLMs and 12 different benchmarks: the downstream ability of LLMs is roughly linearly related to their compression efficiency, with a Pearson correlation coefficient of about -0.95 for each assessed intelligence domain. Importantly, the linear link also holds true for most individual benchmarks. In the same model series, where the model checkpoints share most configurations, including model designs, tokenizers, and data, there have been recent and parallel investigations on the relationship between benchmark scores and compression-equivalent metrics like validation loss.

    Regardless of the model size, tokenizer, context window duration, or pre training data distribution, this study is the first to show that intelligence in LLMs correlates linearly with compression. The research supports the age-old theory that higher-quality compression signifies higher intelligence by demonstrating a universal principle of a linear association between the two. Compression efficiency is a useful unsupervised parameter for LLMs since it allows for easy updating of text corpora to prevent overfitting and test contamination. Because of its linear correlation with the models’ abilities, compression efficiency is a stable, versatile, and trustworthy metric that our results support for assessing LLMs. To make it easy for academics in the future to gather and update their compression corpora, the team has made their data collecting and processing pipelines open source. 

    The researchers highlight a few caveats to our study. To begin, fine-tuned models are not suitable as general-purpose text compressors, so they restrict their attention to base models. Nevertheless, they argue that there are intriguing connections between the compression efficiency of the basic model and the benchmark scores of the related improved models that need to be investigated further. Furthermore, it’s possible that this study’s results only work for fully trained models and don’t apply to LMs because the assessed abilities haven’t even surfaced. The team’s work opens up exciting avenues for future research, inspiring the research community to delve deeper into these issues. 

    Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    For Content Partnership, Please Fill Out This Form Here..

    The post This AI Research from China Provides Empirical Evidence on the Relationship between Compression and Intelligence appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMastering Petty Cash Reconciliation: Best Practices and Automation
    Next Article How Attackers Can Own a Business Without Touching the Endpoint

    Related Posts

    Machine Learning

    Georgia Tech and Stanford Researchers Introduce MLE-Dojo: A Gym-Style Framework Designed for Training, Evaluating, and Benchmarking Autonomous Machine Learning Engineering (MLE) Agents

    May 15, 2025
    Machine Learning

    A Step-by-Step Guide to Build an Automated Knowledge Graph Pipeline Using LangGraph and NetworkX

    May 15, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Container query units: cqi and cqb

    News & Updates

    Hire the Best Shopify Experts in Houston for Your Online Store

    Web Development

    Styling a meter element with CSS and SVG

    Web Development

    OpenAI’s new “Deep Research” blows ChatGPT o3-mini and DeepSeek out of the water with 26.6% accuracy in the world’s hardest “AI exam” — but it skipped the line

    News & Updates

    Highlights

    My everyday Anker power bank has a genius feature that makes it irreplaceable

    August 9, 2024

    The fast USB-C charging is great, but the cable’s layout makes the Anker Nano power…

    How the GitHub CLI can now enable triangular workflows

    April 25, 2025

    CVE-2025-0855 – WordPress PGS Core Plugin PHP Object Injection Vulnerability

    May 6, 2025

    Will we care about frameworks in an AI world?

    November 15, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.