Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»This AI Paper from CMU Introduces AgentKit: A Machine Learning Framework for Building AI Agents Using Natural Language

    This AI Paper from CMU Introduces AgentKit: A Machine Learning Framework for Building AI Agents Using Natural Language

    April 19, 2024

    Agent-based systems in Artificial Intelligence are ones where AI agents perform tasks autonomously within digital environments. Developing intelligent agents that can understand complex instructions and interact dynamically with their environment poses a significant technological challenge. A prevalent issue in agent design is the reliance on sophisticated programming techniques. Traditionally, agents are constructed using code-intensive methods, necessitating a deep familiarity with specific APIs and often restricting flexibility. Such approaches can stifle innovation and accessibility, limiting the potential applications of AI agents outside specialized domains.

    Existing research includes the integration of LLMs like GPT-4 and Chain-of-Thought prompting in agent systems for enhanced planning and interaction. Frameworks like LangChain have refined agent operations, enabling more responsive task management. Innovations by researchers have applied these models to complex scenarios like open-world gaming, using structured prompting to guide agent behavior effectively. These models and frameworks demonstrate a significant shift towards more adaptable and intuitive AI architectures, facilitating dynamic responses and detailed task execution in varying environments.

    In a collaborative effort, researchers from Carnegie Mellon University, NVIDIA, Microsoft, and Boston University have introduced AgentKit, a framework enabling users to construct AI agents using natural language instead of code. This method is distinct because it employs a graph-based design where each node represents a sub-task defined by language prompts. This structure allows complex agent behaviors to be pieced together intuitively, enhancing user accessibility and system flexibility.

    AgentKit employs a structured methodology, mapping each task to a directed acyclic graph (DAG) node. These nodes, representing individual tasks, are interconnected based on task dependencies, ensuring logical progression and systematic execution. As mentioned, the nodes utilize LLMs, specifically GPT-4, to interpret and generate responses to natural language prompts. The framework dynamically adjusts these nodes during execution, allowing real-time response to environmental changes or task demands. Each node’s output is fed into subsequent nodes, maintaining a continuous and efficient workflow. The methodology is geared towards both flexibility in task management and precision in executing complex sequences of operations.

    In testing, AgentKit significantly enhanced task efficiency and adaptability. For instance, the Crafter game simulation improved task completion by 80% compared to existing methods. In the WebShop scenario, AgentKit achieved a 5% higher performance than state-of-the-art models, showcasing its effectiveness in real-time decision-making environments. These results confirm AgentKit’s capability to manage complex tasks through intuitive setups. They illustrate its practical applicability across diverse application domains, achieving robust and measurable improvements in agent-based task execution.

    To conclude, AgentKit represents a significant advancement in AI agent development, simplifying the creation of complex agents through natural language prompts instead of traditional coding. By integrating a graph-based design with large language models like GPT-4, AgentKit allows users to dynamically construct and modify AI behaviors. The framework’s successful application in diverse scenarios, such as gaming and e-commerce, demonstrates its effectiveness and versatility. This research highlights the potential for broader adoption of intuitive, accessible AI technologies in various industries.

    Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    For Content Partnership, Please Fill Out This Form Here..

    The post This AI Paper from CMU Introduces AgentKit: A Machine Learning Framework for Building AI Agents Using Natural Language appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleResearchers at Microsoft Introduces VASA-1: Transforming Realism in Talking Face Generation with Audio-Driven Innovation
    Next Article Enhancing AI Validation with Causal Chambers: Bridging Data Gaps in Machine Learning and Statistics with Controlled Environments

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-48187 – RAGFlow Authentication Bypass

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Building SaaS Website #13: Single Page Applications (SPA) – Admin Panel (Part 1)

    Development

    This AI Paper by DeepMind Introduces Gecko: Setting New Standards in Text-to-Image Model Assessment

    Development

    Gradient makes LLM benchmarking cost-effective and effortless with AWS Inferentia

    Development

    Vertiv KVM IP Switch 8 Port Dealer & Price in Delhi, India

    Web Development

    Highlights

    Linux

    Ubuntu 25.04 Default Wallpaper & Mascot Unveiled

    March 12, 2025

    The default wallpaper for Ubuntu 25.04 ‘Plucky Puffin’ has been unveiled. Each new Ubuntu release…

    URI Parsing and Mutation in Laravel 11.35

    December 20, 2024

    Is Content Design Still Relevant?

    June 12, 2024

    CVE-2025-3832 – “FuseDesk WordPress Stored Cross-Site Scripting Vulnerability”

    April 24, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.