Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Researchers at Apple Introduce ‘pfl-research’: A Fast, Modular, and Easy-to-Use Python Framework for Simulating Federated Learning

    Researchers at Apple Introduce ‘pfl-research’: A Fast, Modular, and Easy-to-Use Python Framework for Simulating Federated Learning

    April 14, 2024

    In the ever-evolving landscape of artificial intelligence, a revolutionary concept has been turning heads and pushing boundaries: federated learning (FL). This cutting-edge approach allows for the collaborative training of machine learning models across different devices and locations, all while keeping personal data securely locked away from prying eyes. It’s like the best of both worlds when it comes to leveraging data for better models while still respecting privacy.

    But as exciting as FL is, conducting research in this space has been a real challenge for data scientists and machine learning engineers. Simulating realistic, large-scale FL scenarios has been a persistent struggle, with existing tools lacking the speed and scalability to keep up with the demands of modern research.

    This paper introduces pfl-research, a game-changing Python framework designed to supercharge your PFL (Private Federated Learning) research efforts. This framework is fast, modular, and user-friendly, making it a dream come true for researchers who want to iterate quickly and explore new ideas without being bogged down by computational limitations.

    One of the standout features of pfl-research is its versatility. It’s like having a multilingual research assistant that can speak the languages of TensorFlow, PyTorch, and even good old-fashioned non-neural network models. And here’s the real kicker: pfl-research plays nicely with the latest privacy algorithms, ensuring that your data stays snug as a bug while you push the boundaries of what’s possible.

    But what really sets pfl-research apart is its building-block approach. It’s like a high-tech Lego set for researchers, with modular components like Dataset, Model, Algorithm, Aggregator, Backend, Postprocessor, and more that you can mix and match to create simulations tailored to your specific needs. Want to test out a novel federated averaging algorithm on a massive image dataset? No problem! Need to experiment with different privacy-preserving techniques for distributed text models? pfl-research has got you covered.

    Now, here’s where things get really exciting. In the tests against other FL simulators, pfl-research surpasses the competition, achieving up to 72 times faster simulation times. With pfl-research, you can run experiments on massive datasets without breaking a sweat or compromising the quality of your research.

    But the pfl-research crew isn’t resting on their laurels. They’ve got big plans to keep improving this tool, like continuously adding support for new algorithms, datasets, and cross-silo simulations (think federated learning across multiple organizations or institutions). They’re also exploring cutting-edge simulation architectures to push the boundaries of scalability and versatility, ensuring that pfl-research stays ahead of the curve as the field of federated learning continues to evolve.

    Just imagine the possibilities that pfl-research unlocks for your research. You could be the one to crack the code on privacy-preserving natural language processing, or develop a groundbreaking federated learning approach for personalized healthcare applications.

    In the ever-evolving world of artificial intelligence research, federated learning is a game-changer, and pfl-research is your ultimate sidekick. It’s fast, flexible, and user-friendly, the dream combination for any researcher looking to break new ground in this exciting domain.

    miliar ones.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    Want to get in front of 1.5 Million AI Audience? Work with us here

    The post Researchers at Apple Introduce ‘pfl-research’: A Fast, Modular, and Easy-to-Use Python Framework for Simulating Federated Learning appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThe Future of Neural Network Training: Empirical Insights into μ-Transfer for Hyperparameter Scaling
    Next Article Full Line Code Completion in JetBrains IDEs with Local LLMs

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47916 – Invision Community Themeeditor Remote Code Execution

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    XigmaNAS – storage NAS distribution

    Linux

    I tried an ultra-thin iPhone case, and here’s how my daunting experience went

    Development

    Shock move by Microsoft: Hiring freeze in consulting to cut costs after significant recent layoffs

    News & Updates

    Machine Learning in Linux: RMBG-2-Studio

    Linux

    Highlights

    Artificial Intelligence

    Genie 2: A large-scale foundation world model

    December 7, 2024

    Generating unlimited diverse training environments for future general agents Source: Read More 

    DeLinuxCo Workstation – Manjaro spin

    December 20, 2024

    Rilasciata PorteuX 1.9: Novità e Miglioramenti per la Distribuzione Portatile Basata su Slackware

    February 4, 2025

    Designer Spotlight: Elena Smirnova

    November 1, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.