Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Researchers at Apple Propose Ferret-UI: A New Multimodal Large Language Model (MLLM) Tailored for Enhanced Understanding of Mobile UI Screens

    Researchers at Apple Propose Ferret-UI: A New Multimodal Large Language Model (MLLM) Tailored for Enhanced Understanding of Mobile UI Screens

    April 11, 2024

    Mobile applications are integral to daily life, serving myriad purposes, from entertainment to productivity. However, the complexity and diversity of mobile user interfaces (UIs) often pose challenges regarding accessibility and user-friendliness. These interfaces are characterized by unique features such as elongated aspect ratios and densely packed elements, including icons and texts, which conventional models struggle to interpret accurately. This gap in technology underscores the pressing need for specialized models capable of deciphering the intricate landscape of mobile apps.

    Existing research and methodologies in mobile UI understanding have introduced frameworks and models such as the RICO dataset, Pix2Struct, and ILuvUI, focusing on structural analysis and language-vision modeling. CogAgent leverages screen images for UI navigation, while Spotlight applies vision-language models to mobile interfaces. Models like Ferret, Shikra, and Kosmos2 enhance referring and grounding capabilities but mainly target natural images. MobileAgent and AppAgent employ MLLMs for screen navigation, indicating a growing emphasis on intuitive interaction mechanisms despite their reliance on external modules or predefined actions.

    Apple researchers have introduced Ferret-UI, a model specifically developed to advance the understanding and interaction with mobile UIs. Distinguishing itself from existing models, Ferret-UI incorporates an “any resolution” capability, adapting to screen aspect ratios and focusing on fine details within UI elements. This approach ensures a deeper, more nuanced comprehension of mobile interfaces.

    Ferret-UI’s methodology revolves around adapting its architecture for mobile UI screens, utilizing an “any resolution” strategy for handling various aspect ratios. The model processes UI screens by dividing them into sub-images, ensuring detailed element focus. Training involves the RICO dataset for Android and proprietary data for iPhone screens, covering elementary and advanced UI tasks. This includes widget classification, icon recognition, OCR, and grounding tasks like find widget and find icon, leveraging GPT-4 for generating advanced task data. The sub-images are encoded separately, using visual features of varying granularity to enrich the model’s understanding and interaction capabilities with mobile UIs.

    Ferret-UI is more than just a promising model; it’s a proven performer. It outperformed open-source UI MLLMs and GPT-4V, exhibiting a significant leap in task-specific performances. In icon recognition tasks, Ferret-UI reached an accuracy rate of 95%, a substantial 25% increase over the nearest competitor model. It achieved a 90% success rate for widget classification, surpassing GPT-4V by 30%. Grounding tasks like finding widgets and icons saw Ferret-UI maintaining 92% and 93% accuracy, respectively, marking 20% and 22% improvement compared to existing models. These figures underline Ferret-UI’s enhanced capability in mobile UI understanding, setting new benchmarks in accuracy and reliability for the field.

    In conclusion, the research introduced Ferret-UI, Apple’s novel approach to improving mobile UI understanding through an “any resolution” strategy and a specialized training regimen. By leveraging detailed aspect-ratio adjustments and comprehensive datasets, Ferret-UI significantly advanced task-specific performance metrics, notably exceeding those of existing models. The quantitative results underscore the model’s enhanced interpretative capabilities. But it’s not just about the numbers. Ferret-UI’s success illustrates the potential for more intuitive and accessible mobile app interactions, paving the way for future advancements in UI comprehension. It’s a model that can truly make a difference in how we interact with mobile UIs.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    The post Researchers at Apple Propose Ferret-UI: A New Multimodal Large Language Model (MLLM) Tailored for Enhanced Understanding of Mobile UI Screens appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleReact Text Highlighting Component – TextIlluminator
    Next Article 15 Short Artificial Intelligence (AI) Courses on DeepLearning.AI

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47916 – Invision Community Themeeditor Remote Code Execution

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Why cant I see any transactions at the Grafana dashboard dropdwon

    Development

    Quick Tip: How to Animate Text Gradients and Patterns in CSS

    Development

    CVE-2025-31223 – Apple Safari Web Content Memory Corruption

    Common Vulnerabilities and Exposures (CVEs)

    Want to save your old computer? Try these 5 Linux distributions

    Development
    Hostinger

    Highlights

    News & Updates

    Microsoft 365 Copilot is about to make importing data into Excel almost effortless

    February 20, 2025

    Microsoft is putting the final touches on a feature for Copilot in Excel that will…

    Critical Commvault RCE vulnerability fixed, PoC available (CVE-2025-34028)

    April 24, 2025

    This handy AI app can read anything aloud to you for free – now in 32 languages

    August 20, 2024

    Microsoft doesn’t want to support ChatGPT training anymore — but OpenAI isn’t “compute-constrained,” according to Sam Altman

    April 16, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.