Siamo lieti di annunciare che Fireworks AI e MongoDB stanno ora diventando partner per rendere l’innovazione con l’IA generativa più veloce, più efficiente e più sicura. Fireworks AI è stata fondata alla fine del 2022 da veterani del settore provenienti dal team PyTorch di Meta, dove si sono concentrati sull’ottimizzazione delle prestazioni, sul miglioramento dell’esperienza degli sviluppatori e sull’esecuzione di applicazioni IA su larga scala.
È questa competenza che Fireworks AI apporta alla sua piattaforma di produzione IA, curando e ottimizzando i principali modelli aperti del settore. Il benchmarking dell’azienda mostra che i modelli di IA generativa in esecuzione su Fireworks AI offrono velocità di inferenza fino a 4 volte maggiori rispetto alle piattaforme alternative, con throughput e scalabilità fino a 8 volte superiori.
I modelli fanno parte dello stack dell’applicazione. Ma per sbloccare la potenza dell’IA generativa, gli sviluppatori devono anche portare i dati aziendali in quei modelli. Ecco perché Fireworks AI è diventato partner di MongoDB, affrontando una delle sfide più difficili per l’adozione dell’IA. Con MongoDB Atlas, gli sviluppatori possono unificare in sicurezza i dati operativi, i dati non strutturati e gli incorporamenti vettoriali, per creare in modo sicuro applicazioni ed esperienze IA coerenti, corrette e differenziate.
Insieme, Fireworks AI e MongoDB offrono una soluzione per gli sviluppatori che desiderano sfruttare modelli open-source altamente curati e ottimizzati e combinarli con i dati proprietari della propria organizzazione, il tutto con una velocità e una sicurezza senza precedenti.
Modelli velocissimi di Fireworks AI: velocità , efficienza e valore garantiti
Grazie alla sua velocissima piattaforma di inferenza, Fireworks AI cura, ottimizza e distribuisce oltre 40 diversi modelli di IA. Queste ottimizzazioni possono portare contemporaneamente a notevoli risparmi sui costi, a una riduzione della latency e a un miglioramento del throughput. La loro piattaforma fornisce questo tramite:
Modelli standard, modelli ottimizzati e componenti aggiuntivi: Fireworks AI fornisce una collection di modelli di testo, incorporamento e base di immagini di alta qualità . Gli sviluppatori possono sfruttare questi modelli o perfezionare e distribuire i propri, abbinandoli ai propri dati proprietari utilizzando MongoDB Atlas.
Funzionalità di ottimizzazione: per migliorare ulteriormente la precisione e la velocità del modello, Fireworks AI offre anche un servizio di ottimizzazione utilizzando la sua CLI per acquisire oggetti in formato JSON da database come MongoDB Atlas.
Interfacce e API semplici per lo sviluppo e la produzione: il playground Fireworks AI consente agli sviluppatori di interagire con i modelli direttamente in un browser. È anche possibile accedervi a livello di programmazione tramite una comoda REST API. Questo è compatibile con l’API OpenAI e quindi interagisce con l’ecosistema LLM più ampio.
Cookbook: un cookbook semplice e facile da usare fornisce un set completo di ricette pronte all’uso che possono essere adattate a vari casi d’uso, tra cui la messa a punto, la generazione e la valutazione.
Fireworks AI e MongoDB: definizione dello standard per l’IA con modelli curati, ottimizzati e veloci
Con Fireworks AI e MongoDB Atlas, le app vengono eseguite in ambienti isolati garantendo tempi di attività e privacy, protetti da sofisticati controlli di sicurezza che soddisfano gli standard normativi più severi:
Essendo uno dei principali fornitori di API di modelli open source, Fireworks AI serve 66 miliardi di token al giorno (e oltre).
Con Atlas, esegui le tue app su una piattaforma collaudata che serve decine di migliaia di clienti, dalle startup in forte crescita alle più grandi aziende e governi.
Insieme, la soluzione congiunta Fireworks AI e MongoDB consente:
RAG o Q&A da un vasto bacino di documenti: ingerisci un gran numero di documenti per produrre sintesi e dati strutturati che possono poi alimentare l’IA conversazionale.
Classificazione tramite ricerca semantica/somiglianza: classifica e analizza concetti ed emozioni provenienti da chiamate di vendita, videoconferenze e altro per fornire informazioni e strategie migliori. Oppure, organizza e classifica un catalogo di prodotti utilizzando immagini e testo.
Estrazione da immagini a dati strutturati: estrai significato dalle immagini per produrre dati strutturati che possono essere elaborati e ricercati in una vasta gamma di app per la visione: dalle foto stock, alla moda, al rilevamento di oggetti, alla diagnostica medica.
Intelligence sugli avvisi: elabora grandi quantità di dati in tempo reale per rilevare e avvisare automaticamente su casi di frode, minacce alla sicurezza informatica e altro ancora.
Figura 1: Il tutorial di Fireworks mostra come trasferire i propri dati su LLM con retrieval-augmented generation (RAG) e MongoDB Atlas
Introduzione a Fireworks AI e MongoDB Atlas
Per aiutarti a iniziare, consulta il tutorial IA “Ottimizzazione RAG con MongoDB Atlas e Fireworks AI“, che mostra come creare un’app per consigliare film e prevede:
MongoDB Atlas Database che indicizza i film utilizzando gli incorporamenti. (Archivio vettoriale)
Un sistema per la generazione di incorporamenti di documenti. Utilizzeremo l’API di incorporamento di Fireworks per creare incorporamenti da dati di testo. (Vettorializzazione)
MongoDB Atlas Vector Search risponde alle domande degli utenti convertendo la query in un incorporamento, recuperando i filmati corrispondenti. (Motore di recupero)
Il modello Mixtral utilizza l’API di inferenza di Fireworks per generare i consigli. È possibile anche usare anche Llama, Gemma e altri fantastici modelli OSS. (LLM)
Caricamento del set di dati Mflix di esempio di MongoDB Atlas per generare incorporamenti (set di dati)
Possiamo anche aiutarti a progettare la migliore architettura per le esigenze della tua organizzazione. Mettiti in contatto con il team del tuo account o contattaci qui per programmare una sessione collaborativa ed esplorare come Fireworks AI e MongoDB possono ottimizzare il tuo processo di sviluppo dell’IA.
Source: Read More