Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Meet Sailor: A Family of Open Language Models Ranging from 0.5B to 7B Parameters for Southeast Asian (SEA) Languages

    Meet Sailor: A Family of Open Language Models Ranging from 0.5B to 7B Parameters for Southeast Asian (SEA) Languages

    April 9, 2024

    Large Language Models (LLM) have immense capabilities that have advanced remarkably in the last few years. Two primary causes of this increase are the internet’s exponential data growth and ongoing advancements in pre-training methods. Prominent models such as GPT, Gemini, and Llama have raised the bar in a number of areas, including logical reasoning, coding, and creative writing.

    The caliber and volume of the datasets on which these models are trained significantly impact their effectiveness. Because there is so much English content available online, English is becoming the main language used to train LLMs. This reliance on English datasets has been hampering obtaining comparable performance in other languages. The curse of multilingualism refers to the possibility that models that were mostly trained on English data may underperform in non-English languages as a result of insufficient exposure during pre-training.

    To overcome this, in recent research, a team of researchers from Sea AI Lab, Singapore and SUTD, Singapore, presented the Sailor project, a set of free language models created especially for Southeast Asian (SEA) languages. These models have parameters ranging from 0.5B to 7B and are designed to accommodate the region’s linguistic variety. They are based on the flexible language model Qwen1.5, which is designed for multilingual applications. 

    Sailor models have been continuously pre-trained using a large corpus of 200B to 400B tokens, beginning with Qwen1.5. The languages that make up the majority of this corpus include English, Chinese, Vietnamese, Thai, Indonesian, Malay, and Lao, all of which are important in the Southeast Asian region. The training procedure uses this large amount of data to apply a number of strategies meant to improve model performance.

    BPE (Byte Pair Encoding) dropout is one such method that has been used to increase the models’ resilience. BPE dropout improves the model’s capacity to generalize across various language patterns and situations while assisting in the mitigation of overfitting problems. 

    The training pipeline also incorporates rigorous deduplication and data-cleaning processes. These actions are essential for guaranteeing the caliber of the training set, which enhances the Sailor models’ overall performance. The models gain precision and dependability in their forecasts by eliminating extraneous data and noise.

    The team has shared that the combination of training data has been optimized by using tiny proxy models. This method allows for the adjustment of hyperparameters, such as the data mixture ratio, which enhances training process effectiveness and, in turn, improves model performance.

    Experiments on a range of tasks, such as examination, question responding, reading comprehension, and common sense thinking, have shown how resilient and useful Sailor models are when compared to diverse standards. These findings highlight the potential of Sailor models to help the SEA region’s language problems across a broad spectrum. 

    In conclusion, the research presents a thorough methodology for creating LLMs that function effectively in the SEA region’s variety of languages, addressing issues like multilingualism and data quality while utilizing some great methods to improve model resilience and performance.

    Check out the Paper, Project, and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 40k+ ML SubReddit

    The post Meet Sailor: A Family of Open Language Models Ranging from 0.5B to 7B Parameters for Southeast Asian (SEA) Languages appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleEmbracing the Cloud: Revolutionizing Privileged Access Management with One Identity Cloud PAM Essentials
    Next Article Attackers Using Obfuscation Tools to Deliver Multi-Stage Malware via Invoice Phishing

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 16, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47916 – Invision Community Themeeditor Remote Code Execution

    May 16, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    AI in Search? The Grumpy Designer Isn’t Impressed So Far

    Development

    The Hoodie Man by the Mountain

    Artificial Intelligence

    Implementing Account Suspension in Laravel

    Development

    I’ve never seen anything like this insanely powerful 14-inch AI laptop, but only about 4 people need it

    News & Updates

    Highlights

    CVE-2025-46530 – HuangYe WuDeng Hacklog Remote Attachment CSRF Stored XSS

    April 24, 2025

    CVE ID : CVE-2025-46530

    Published : April 24, 2025, 4:15 p.m. | 2 hours, 44 minutes ago

    Description : Cross-Site Request Forgery (CSRF) vulnerability in HuangYe WuDeng Hacklog Remote Attachment allows Stored XSS. This issue affects Hacklog Remote Attachment: from n/a through 1.3.2.

    Severity: 7.1 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Secureworks Fills Australian Mid-Market Demand for Simplified Cyber Security Solutions

    August 12, 2024

    Lessons learned debugging Interaction to Next Paint (INP)

    August 16, 2024

    Microsoft adds three new AI features to Copilot+ PCs – including the controversial Recall

    April 25, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.