Development

CVE ID : CVE-2025-46568

Published : May 1, 2025, 6:15 p.m. | 1 hour, 11 minutes ago

Description : Stirling-PDF is a locally hosted web application that allows you to perform various operations on PDF files. Prior to version 0.45.0, Stirling-PDF is vulnerable to SSRF-induced arbitrary file read. WeasyPrint redefines a set of HTML tags, including img, embed, object, and others. The references to several files inside, allow the attachment of content from any webpage or local file to a PDF. This allows the attacker to read any file on the server, including sensitive files and configuration files. All users utilizing this feature will be affected. This issue has been patched in version 0.45.0.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-35975

Published : May 1, 2025, 7:15 p.m. | 53 minutes ago

Description : MicroDicom DICOM Viewer is vulnerable to an out-of-bounds write which may allow an attacker to execute arbitrary code. The user must open a malicious DCM file for exploitation.

Severity: 8.8 | HIGH

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-32011

Published : May 1, 2025, 7:15 p.m. | 53 minutes ago

Description : KUNBUS PiCtory versions 2.5.0 through 2.11.1 have an authentication bypass vulnerability where a remote attacker can bypass authentication to get access due to a path traversal.

Severity: 9.8 | CRITICAL

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-24522

Published : May 1, 2025, 7:15 p.m. | 53 minutes ago

Description : KUNBUS Revolution Pi OS Bookworm 01/2025 is vulnerable because authentication is not configured by default for the Node-RED server. This can give an unauthenticated remote attacker full access to the Node-RED server where they can run arbitrary commands on the underlying operating system.

Severity: 10.0 | CRITICAL

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-35996

Published : May 1, 2025, 7:15 p.m. | 53 minutes ago

Description : KUNBUS PiCtory version 2.11.1 and earlier are vulnerable when an authenticated remote attacker crafts a special filename that can be stored by API endpoints. That filename is later transmitted to the client in order to show a list of configuration files. Due to a missing escape or sanitization, the filename could be executed as HTML script tag resulting in a cross-site-scripting attack.

Severity: 9.0 | CRITICAL

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-36521

Published : May 1, 2025, 7:15 p.m. | 53 minutes ago

Description : MicroDicom DICOM Viewer is vulnerable to an out-of-bounds read which may allow an attacker to cause memory corruption within the application. The user must open a malicious DCM file for exploitation.

Severity: 8.8 | HIGH

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-23254

Published : May 1, 2025, 2:15 p.m. | 1 hour, 50 minutes ago

Description : NVIDIA TensorRT-LLM for any platform contains a vulnerability in python executor where an attacker may cause a data validation issue by local access to the TRTLLM server. A successful exploit of this vulnerability may lead to code execution, information disclosure and data tampering.

Severity: 8.8 | HIGH

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37773

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

virtiofs: add filesystem context source name check

In certain scenarios, for example, during fuzz testing, the source
name may be NULL, which could lead to a kernel panic. Therefore, an
extra check for the source name should be added.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37774

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

slab: ensure slab->obj_exts is clear in a newly allocated slab page

ktest recently reported crashes while running several buffered io tests
with __alloc_tagging_slab_alloc_hook() at the top of the crash call stack.
The signature indicates an invalid address dereference with low bits of
slab->obj_exts being set. The bits were outside of the range used by
page_memcg_data_flags and objext_flags and hence were not masked out
by slab_obj_exts() when obtaining the pointer stored in slab->obj_exts.
The typical crash log looks like this:

00510 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
00510 Mem abort info:
00510 ESR = 0x0000000096000045
00510 EC = 0x25: DABT (current EL), IL = 32 bits
00510 SET = 0, FnV = 0
00510 EA = 0, S1PTW = 0
00510 FSC = 0x05: level 1 translation fault
00510 Data abort info:
00510 ISV = 0, ISS = 0x00000045, ISS2 = 0x00000000
00510 CM = 0, WnR = 1, TnD = 0, TagAccess = 0
00510 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
00510 user pgtable: 4k pages, 39-bit VAs, pgdp=0000000104175000
00510 [0000000000000010] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
00510 Internal error: Oops: 0000000096000045 [#1] SMP
00510 Modules linked in:
00510 CPU: 10 UID: 0 PID: 7692 Comm: cat Not tainted 6.15.0-rc1-ktest-g189e17946605 #19327 NONE
00510 Hardware name: linux,dummy-virt (DT)
00510 pstate: 20001005 (nzCv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=–)
00510 pc : __alloc_tagging_slab_alloc_hook+0xe0/0x190
00510 lr : __kmalloc_noprof+0x150/0x310
00510 sp : ffffff80c87df6c0
00510 x29: ffffff80c87df6c0 x28: 000000000013d1ff x27: 000000000013d200
00510 x26: ffffff80c87df9e0 x25: 0000000000000000 x24: 0000000000000001
00510 x23: ffffffc08041953c x22: 000000000000004c x21: ffffff80c0002180
00510 x20: fffffffec3120840 x19: ffffff80c4821000 x18: 0000000000000000
00510 x17: fffffffec3d02f00 x16: fffffffec3d02e00 x15: fffffffec3d00700
00510 x14: fffffffec3d00600 x13: 0000000000000200 x12: 0000000000000006
00510 x11: ffffffc080bb86c0 x10: 0000000000000000 x9 : ffffffc080201e58
00510 x8 : ffffff80c4821060 x7 : 0000000000000000 x6 : 0000000055555556
00510 x5 : 0000000000000001 x4 : 0000000000000010 x3 : 0000000000000060
00510 x2 : 0000000000000000 x1 : ffffffc080f50cf8 x0 : ffffff80d801d000
00510 Call trace:
00510 __alloc_tagging_slab_alloc_hook+0xe0/0x190 (P)
00510 __kmalloc_noprof+0x150/0x310
00510 __bch2_folio_create+0x5c/0xf8
00510 bch2_folio_create+0x2c/0x40
00510 bch2_readahead+0xc0/0x460
00510 read_pages+0x7c/0x230
00510 page_cache_ra_order+0x244/0x3a8
00510 page_cache_async_ra+0x124/0x170
00510 filemap_readahead.isra.0+0x58/0xa0
00510 filemap_get_pages+0x454/0x7b0
00510 filemap_read+0xdc/0x418
00510 bch2_read_iter+0x100/0x1b0
00510 vfs_read+0x214/0x300
00510 ksys_read+0x6c/0x108
00510 __arm64_sys_read+0x20/0x30
00510 invoke_syscall.constprop.0+0x54/0xe8
00510 do_el0_svc+0x44/0xc8
00510 el0_svc+0x18/0x58
00510 el0t_64_sync_handler+0x104/0x130
00510 el0t_64_sync+0x154/0x158
00510 Code: d5384100 f9401c01 b9401aa3 b40002e1 (f8227881)
00510 —[ end trace 0000000000000000 ]—
00510 Kernel panic – not syncing: Oops: Fatal exception
00510 SMP: stopping secondary CPUs
00510 Kernel Offset: disabled
00510 CPU features: 0x0000,000000e0,00000410,8240500b
00510 Memory Limit: none

Investigation indicates that these bits are already set when we allocate
slab page and are not zeroed out after allocation. We are not yet sure
why these crashes start happening only recently but regardless of the
reason, not initializing a field that gets used later is wrong. Fix it
by initializing slab->obj_exts during slab page allocation.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37775

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

ksmbd: fix the warning from __kernel_write_iter

[ 2110.972290] ————[ cut here ]————
[ 2110.972301] WARNING: CPU: 3 PID: 735 at fs/read_write.c:599 __kernel_write_iter+0x21b/0x280

This patch doesn’t allow writing to directory.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37776

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

ksmbd: fix use-after-free in smb_break_all_levII_oplock()

There is a room in smb_break_all_levII_oplock that can cause racy issues
when unlocking in the middle of the loop. This patch use read lock
to protect whole loop.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37777

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

ksmbd: fix use-after-free in __smb2_lease_break_noti()

Move tcp_transport free to ksmbd_conn_free. If ksmbd connection is
referenced when ksmbd server thread terminates, It will not be freed,
but conn->tcp_transport is freed. __smb2_lease_break_noti can be performed
asynchronously when the connection is disconnected. __smb2_lease_break_noti
calls ksmbd_conn_write, which can cause use-after-free
when conn->ksmbd_transport is already freed.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37778

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

ksmbd: Fix dangling pointer in krb_authenticate

krb_authenticate frees sess->user and does not set the pointer
to NULL. It calls ksmbd_krb5_authenticate to reinitialise
sess->user but that function may return without doing so. If
that happens then smb2_sess_setup, which calls krb_authenticate,
will be accessing free’d memory when it later uses sess->user.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37779

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

lib/iov_iter: fix to increase non slab folio refcount

When testing EROFS file-backed mount over v9fs on qemu, I encountered a
folio UAF issue. The page sanity check reports the following call trace.
The root cause is that pages in bvec are coalesced across a folio bounary.
The refcount of all non-slab folios should be increased to ensure
p9_releas_pages can put them correctly.

BUG: Bad page state in process md5sum pfn:18300
page: refcount:0 mapcount:0 mapping:00000000d5ad8e4e index:0x60 pfn:0x18300
head: order:0 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
aops:z_erofs_aops ino:30b0f dentry name(?):”GoogleExtServicesCn.apk”
flags: 0x100000000000041(locked|head|node=0|zone=1)
raw: 0100000000000041 dead000000000100 dead000000000122 ffff888014b13bd0
raw: 0000000000000060 0000000000000020 00000000ffffffff 0000000000000000
head: 0100000000000041 dead000000000100 dead000000000122 ffff888014b13bd0
head: 0000000000000060 0000000000000020 00000000ffffffff 0000000000000000
head: 0100000000000000 0000000000000000 ffffffffffffffff 0000000000000000
head: 0000000000000010 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
Call Trace:
dump_stack_lvl+0x53/0x70
bad_page+0xd4/0x220
__free_pages_ok+0x76d/0xf30
__folio_put+0x230/0x320
p9_release_pages+0x179/0x1f0
p9_virtio_zc_request+0xa2a/0x1230
p9_client_zc_rpc.constprop.0+0x247/0x700
p9_client_read_once+0x34d/0x810
p9_client_read+0xf3/0x150
v9fs_issue_read+0x111/0x360
netfs_unbuffered_read_iter_locked+0x927/0x1390
netfs_unbuffered_read_iter+0xa2/0xe0
vfs_iocb_iter_read+0x2c7/0x460
erofs_fileio_rq_submit+0x46b/0x5b0
z_erofs_runqueue+0x1203/0x21e0
z_erofs_readahead+0x579/0x8b0
read_pages+0x19f/0xa70
page_cache_ra_order+0x4ad/0xb80
filemap_readahead.isra.0+0xe7/0x150
filemap_get_pages+0x7aa/0x1890
filemap_read+0x320/0xc80
vfs_read+0x6c6/0xa30
ksys_read+0xf9/0x1c0
do_syscall_64+0x9e/0x1a0
entry_SYSCALL_64_after_hwframe+0x71/0x79

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37780

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

isofs: Prevent the use of too small fid

syzbot reported a slab-out-of-bounds Read in isofs_fh_to_parent. [1]

The handle_bytes value passed in by the reproducing program is equal to 12.
In handle_to_path(), only 12 bytes of memory are allocated for the structure
file_handle->f_handle member, which causes an out-of-bounds access when
accessing the member parent_block of the structure isofs_fid in isofs,
because accessing parent_block requires at least 16 bytes of f_handle.
Here, fh_len is used to indirectly confirm that the value of handle_bytes
is greater than 3 before accessing parent_block.

[1]
BUG: KASAN: slab-out-of-bounds in isofs_fh_to_parent+0x1b8/0x210 fs/isofs/export.c:183
Read of size 4 at addr ffff0000cc030d94 by task syz-executor215/6466
CPU: 1 UID: 0 PID: 6466 Comm: syz-executor215 Not tainted 6.14.0-rc7-syzkaller-ga2392f333575 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025
Call trace:
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:466 (C)
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0xe4/0x150 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0x198/0x550 mm/kasan/report.c:521
kasan_report+0xd8/0x138 mm/kasan/report.c:634
__asan_report_load4_noabort+0x20/0x2c mm/kasan/report_generic.c:380
isofs_fh_to_parent+0x1b8/0x210 fs/isofs/export.c:183
exportfs_decode_fh_raw+0x2dc/0x608 fs/exportfs/expfs.c:523
do_handle_to_path+0xa0/0x198 fs/fhandle.c:257
handle_to_path fs/fhandle.c:385 [inline]
do_handle_open+0x8cc/0xb8c fs/fhandle.c:403
__do_sys_open_by_handle_at fs/fhandle.c:443 [inline]
__se_sys_open_by_handle_at fs/fhandle.c:434 [inline]
__arm64_sys_open_by_handle_at+0x80/0x94 fs/fhandle.c:434
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x54/0x168 arch/arm64/kernel/entry-common.c:744
el0t_64_sync_handler+0x84/0x108 arch/arm64/kernel/entry-common.c:762
el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600

Allocated by task 6466:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x40/0x78 mm/kasan/common.c:68
kasan_save_alloc_info+0x40/0x50 mm/kasan/generic.c:562
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0xac/0xc4 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4294 [inline]
__kmalloc_noprof+0x32c/0x54c mm/slub.c:4306
kmalloc_noprof include/linux/slab.h:905 [inline]
handle_to_path fs/fhandle.c:357 [inline]
do_handle_open+0x5a4/0xb8c fs/fhandle.c:403
__do_sys_open_by_handle_at fs/fhandle.c:443 [inline]
__se_sys_open_by_handle_at fs/fhandle.c:434 [inline]
__arm64_sys_open_by_handle_at+0x80/0x94 fs/fhandle.c:434
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x54/0x168 arch/arm64/kernel/entry-common.c:744
el0t_64_sync_handler+0x84/0x108 arch/arm64/kernel/entry-common.c:762
el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37782

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

hfs/hfsplus: fix slab-out-of-bounds in hfs_bnode_read_key

Syzbot reported an issue in hfs subsystem:

BUG: KASAN: slab-out-of-bounds in memcpy_from_page include/linux/highmem.h:423 [inline]
BUG: KASAN: slab-out-of-bounds in hfs_bnode_read fs/hfs/bnode.c:35 [inline]
BUG: KASAN: slab-out-of-bounds in hfs_bnode_read_key+0x314/0x450 fs/hfs/bnode.c:70
Write of size 94 at addr ffff8880123cd100 by task syz-executor237/5102

Call Trace:

__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x40/0x70 mm/kasan/shadow.c:106
memcpy_from_page include/linux/highmem.h:423 [inline]
hfs_bnode_read fs/hfs/bnode.c:35 [inline]
hfs_bnode_read_key+0x314/0x450 fs/hfs/bnode.c:70
hfs_brec_insert+0x7f3/0xbd0 fs/hfs/brec.c:159
hfs_cat_create+0x41d/0xa50 fs/hfs/catalog.c:118
hfs_mkdir+0x6c/0xe0 fs/hfs/dir.c:232
vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257
do_mkdirat+0x264/0x3a0 fs/namei.c:4280
__do_sys_mkdir fs/namei.c:4300 [inline]
__se_sys_mkdir fs/namei.c:4298 [inline]
__x64_sys_mkdir+0x6c/0x80 fs/namei.c:4298
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fbdd6057a99

Add a check for key length in hfs_bnode_read_key to prevent
out-of-bounds memory access. If the key length is invalid, the
key buffer is cleared, improving stability and reliability.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37786

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

net: dsa: free routing table on probe failure

If complete = true in dsa_tree_setup(), it means that we are the last
switch of the tree which is successfully probing, and we should be
setting up all switches from our probe path.

After “complete” becomes true, dsa_tree_setup_cpu_ports() or any
subsequent function may fail. If that happens, the entire tree setup is
in limbo: the first N-1 switches have successfully finished probing
(doing nothing but having allocated persistent memory in the tree’s
dst->ports, and maybe dst->rtable), and switch N failed to probe, ending
the tree setup process before anything is tangible from the user’s PoV.

If switch N fails to probe, its memory (ports) will be freed and removed
from dst->ports. However, the dst->rtable elements pointing to its ports,
as created by dsa_link_touch(), will remain there, and will lead to
use-after-free if dereferenced.

If dsa_tree_setup_switches() returns -EPROBE_DEFER, which is entirely
possible because that is where ds->ops->setup() is, we get a kasan
report like this:

==================================================================
BUG: KASAN: slab-use-after-free in mv88e6xxx_setup_upstream_port+0x240/0x568
Read of size 8 at addr ffff000004f56020 by task kworker/u8:3/42

Call trace:
__asan_report_load8_noabort+0x20/0x30
mv88e6xxx_setup_upstream_port+0x240/0x568
mv88e6xxx_setup+0xebc/0x1eb0
dsa_register_switch+0x1af4/0x2ae0
mv88e6xxx_register_switch+0x1b8/0x2a8
mv88e6xxx_probe+0xc4c/0xf60
mdio_probe+0x78/0xb8
really_probe+0x2b8/0x5a8
__driver_probe_device+0x164/0x298
driver_probe_device+0x78/0x258
__device_attach_driver+0x274/0x350

Allocated by task 42:
__kasan_kmalloc+0x84/0xa0
__kmalloc_cache_noprof+0x298/0x490
dsa_switch_touch_ports+0x174/0x3d8
dsa_register_switch+0x800/0x2ae0
mv88e6xxx_register_switch+0x1b8/0x2a8
mv88e6xxx_probe+0xc4c/0xf60
mdio_probe+0x78/0xb8
really_probe+0x2b8/0x5a8
__driver_probe_device+0x164/0x298
driver_probe_device+0x78/0x258
__device_attach_driver+0x274/0x350

Freed by task 42:
__kasan_slab_free+0x48/0x68
kfree+0x138/0x418
dsa_register_switch+0x2694/0x2ae0
mv88e6xxx_register_switch+0x1b8/0x2a8
mv88e6xxx_probe+0xc4c/0xf60
mdio_probe+0x78/0xb8
really_probe+0x2b8/0x5a8
__driver_probe_device+0x164/0x298
driver_probe_device+0x78/0x258
__device_attach_driver+0x274/0x350

The simplest way to fix the bug is to delete the routing table in its
entirety. dsa_tree_setup_routing_table() has no problem in regenerating
it even if we deleted links between ports other than those of switch N,
because dsa_link_touch() first checks whether the port pair already
exists in dst->rtable, allocating if not.

The deletion of the routing table in its entirety already exists in
dsa_tree_teardown(), so refactor that into a function that can also be
called from the tree setup error path.

In my analysis of the commit to blame, it is the one which added
dsa_link elements to dst->rtable. Prior to that, each switch had its own
ds->rtable which is freed when the switch fails to probe. But the tree
is potentially persistent memory.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37783

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

drm/msm/dpu: Fix error pointers in dpu_plane_virtual_atomic_check

The function dpu_plane_virtual_atomic_check was dereferencing pointers
returned by drm_atomic_get_plane_state without checking for errors. This
could lead to undefined behavior if the function returns an error pointer.

This commit adds checks using IS_ERR to ensure that plane_state is
valid before dereferencing them.

Similar to commit da29abe71e16
(“drm/amd/display: Fix error pointers in amdgpu_dm_crtc_mem_type_changed”).

Patchwork: https://patchwork.freedesktop.org/patch/643132/

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37784

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

net: ti: icss-iep: Fix possible NULL pointer dereference for perout request

The ICSS IEP driver tracks perout and pps enable state with flags.
Currently when disabling pps and perout signals during icss_iep_exit(),
results in NULL pointer dereference for perout.

To fix the null pointer dereference issue, the icss_iep_perout_enable_hw
function can be modified to directly clear the IEP CMP registers when
disabling PPS or PEROUT, without referencing the ptp_perout_request
structure, as its contents are irrelevant in this case.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-37781

Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

i2c: cros-ec-tunnel: defer probe if parent EC is not present

When i2c-cros-ec-tunnel and the EC driver are built-in, the EC parent
device will not be found, leading to NULL pointer dereference.

That can also be reproduced by unbinding the controller driver and then
loading i2c-cros-ec-tunnel module (or binding the device).

[ 271.991245] BUG: kernel NULL pointer dereference, address: 0000000000000058
[ 271.998215] #PF: supervisor read access in kernel mode
[ 272.003351] #PF: error_code(0x0000) – not-present page
[ 272.008485] PGD 0 P4D 0
[ 272.011022] Oops: Oops: 0000 [#1] SMP NOPTI
[ 272.015207] CPU: 0 UID: 0 PID: 3859 Comm: insmod Tainted: G S 6.15.0-rc1-00004-g44722359ed83 #30 PREEMPT(full) 3c7fb39a552e7d949de2ad921a7d6588d3a4fdc5
[ 272.030312] Tainted: [S]=CPU_OUT_OF_SPEC
[ 272.034233] Hardware name: HP Berknip/Berknip, BIOS Google_Berknip.13434.356.0 05/17/2021
[ 272.042400] RIP: 0010:ec_i2c_probe+0x2b/0x1c0 [i2c_cros_ec_tunnel]
[ 272.048577] Code: 1f 44 00 00 41 57 41 56 41 55 41 54 53 48 83 ec 10 65 48 8b 05 06 a0 6c e7 48 89 44 24 08 4c 8d 7f 10 48 8b 47 50 4c 8b 60 78 83 7c 24 58 00 0f 84 2f 01 00 00 48 89 fb be 30 06 00 00 4c 9
[ 272.067317] RSP: 0018:ffffa32082a03940 EFLAGS: 00010282
[ 272.072541] RAX: ffff969580b6a810 RBX: ffff969580b68c10 RCX: 0000000000000000
[ 272.079672] RDX: 0000000000000000 RSI: 0000000000000282 RDI: ffff969580b68c00
[ 272.086804] RBP: 00000000fffffdfb R08: 0000000000000000 R09: 0000000000000000
[ 272.093936] R10: 0000000000000000 R11: ffffffffc0600000 R12: 0000000000000000
[ 272.101067] R13: ffffffffa666fbb8 R14: ffffffffc05b5528 R15: ffff969580b68c10
[ 272.108198] FS: 00007b930906fc40(0000) GS:ffff969603149000(0000) knlGS:0000000000000000
[ 272.116282] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 272.122024] CR2: 0000000000000058 CR3: 000000012631c000 CR4: 00000000003506f0
[ 272.129155] Call Trace:
[ 272.131606]
[ 272.133709] ? acpi_dev_pm_attach+0xdd/0x110
[ 272.137985] platform_probe+0x69/0xa0
[ 272.141652] really_probe+0x152/0x310
[ 272.145318] __driver_probe_device+0x77/0x110
[ 272.149678] driver_probe_device+0x1e/0x190
[ 272.153864] __driver_attach+0x10b/0x1e0
[ 272.157790] ? driver_attach+0x20/0x20
[ 272.161542] bus_for_each_dev+0x107/0x150
[ 272.165553] bus_add_driver+0x15d/0x270
[ 272.169392] driver_register+0x65/0x110
[ 272.173232] ? cleanup_module+0xa80/0xa80 [i2c_cros_ec_tunnel 3a00532f3f4af4a9eade753f86b0f8dd4e4e5698]
[ 272.182617] do_one_initcall+0x110/0x350
[ 272.186543] ? security_kernfs_init_security+0x49/0xd0
[ 272.191682] ? __kernfs_new_node+0x1b9/0x240
[ 272.195954] ? security_kernfs_init_security+0x49/0xd0
[ 272.201093] ? __kernfs_new_node+0x1b9/0x240
[ 272.205365] ? kernfs_link_sibling+0x105/0x130
[ 272.209810] ? kernfs_next_descendant_post+0x1c/0xa0
[ 272.214773] ? kernfs_activate+0x57/0x70
[ 272.218699] ? kernfs_add_one+0x118/0x160
[ 272.222710] ? __kernfs_create_file+0x71/0xa0
[ 272.227069] ? sysfs_add_bin_file_mode_ns+0xd6/0x110
[ 272.232033] ? internal_create_group+0x453/0x4a0
[ 272.236651] ? __vunmap_range_noflush+0x214/0x2d0
[ 272.241355] ? __free_frozen_pages+0x1dc/0x420
[ 272.245799] ? free_vmap_area_noflush+0x10a/0x1c0
[ 272.250505] ? load_module+0x1509/0x16f0
[ 272.254431] do_init_module+0x60/0x230
[ 272.258181] __se_sys_finit_module+0x27a/0x370
[ 272.262627] do_syscall_64+0x6a/0xf0
[ 272.266206] ? do_syscall_64+0x76/0xf0
[ 272.269956] ? irqentry_exit_to_user_mode+0x79/0x90
[ 272.274836] entry_SYSCALL_64_after_hwframe+0x55/0x5d
[ 272.279887] RIP: 0033:0x7b9309168d39
[ 272.283466] Code: 5b 41 5c 5d c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 3d 01 f0 ff ff 73 01 c3 48 8b 0d af 40 0c 00 f7 d8 64 89 01 8
[ 272.302210] RSP: 002b:00007fff50f1a288 EFLAGS: 00000246 ORIG_RAX: 000
—truncated—

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…