CVE ID : CVE-2025-38227

Published : July 4, 2025, 2:15 p.m. | 4 hours, 57 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

media: vidtv: Terminating the subsequent process of initialization failure

syzbot reported a slab-use-after-free Read in vidtv_mux_init. [1]

After PSI initialization fails, the si member is accessed again, resulting
in this uaf.

After si initialization fails, the subsequent process needs to be exited.

[1]
BUG: KASAN: slab-use-after-free in vidtv_mux_pid_ctx_init drivers/media/test-drivers/vidtv/vidtv_mux.c:78 [inline]
BUG: KASAN: slab-use-after-free in vidtv_mux_init+0xac2/0xbe0 drivers/media/test-drivers/vidtv/vidtv_mux.c:524
Read of size 8 at addr ffff88802fa42acc by task syz.2.37/6059

CPU: 0 UID: 0 PID: 6059 Comm: syz.2.37 Not tainted 6.14.0-rc5-syzkaller #0
Hardware name: Google Compute Engine, BIOS Google 02/12/2025
Call Trace:

__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xd9/0x110 mm/kasan/report.c:634
vidtv_mux_pid_ctx_init drivers/media/test-drivers/vidtv/vidtv_mux.c:78
vidtv_mux_init+0xac2/0xbe0 drivers/media/test-drivers/vidtv/vidtv_mux.c:524
vidtv_start_streaming drivers/media/test-drivers/vidtv/vidtv_bridge.c:194
vidtv_start_feed drivers/media/test-drivers/vidtv/vidtv_bridge.c:239
dmx_section_feed_start_filtering drivers/media/dvb-core/dvb_demux.c:973
dvb_dmxdev_feed_start drivers/media/dvb-core/dmxdev.c:508 [inline]
dvb_dmxdev_feed_restart.isra.0 drivers/media/dvb-core/dmxdev.c:537
dvb_dmxdev_filter_stop+0x2b4/0x3a0 drivers/media/dvb-core/dmxdev.c:564
dvb_dmxdev_filter_free drivers/media/dvb-core/dmxdev.c:840 [inline]
dvb_demux_release+0x92/0x550 drivers/media/dvb-core/dmxdev.c:1246
__fput+0x3ff/0xb70 fs/file_table.c:464
task_work_run+0x14e/0x250 kernel/task_work.c:227
exit_task_work include/linux/task_work.h:40 [inline]
do_exit+0xad8/0x2d70 kernel/exit.c:938
do_group_exit+0xd3/0x2a0 kernel/exit.c:1087
__do_sys_exit_group kernel/exit.c:1098 [inline]
__se_sys_exit_group kernel/exit.c:1096 [inline]
__x64_sys_exit_group+0x3e/0x50 kernel/exit.c:1096
x64_sys_call+0x151f/0x1720 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f871d58d169
Code: Unable to access opcode bytes at 0x7f871d58d13f.
RSP: 002b:00007fff4b19a788 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f871d58d169
RDX: 0000000000000064 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 00007fff4b19a7ec R08: 0000000b4b19a87f R09: 00000000000927c0
R10: 0000000000000001 R11: 0000000000000246 R12: 0000000000000003
R13: 00000000000927c0 R14: 000000000001d553 R15: 00007fff4b19a840

Allocated by task 6059:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:394
kmalloc_noprof include/linux/slab.h:901 [inline]
kzalloc_noprof include/linux/slab.h:1037 [inline]
vidtv_psi_pat_table_init drivers/media/test-drivers/vidtv/vidtv_psi.c:970
vidtv_channel_si_init drivers/media/test-drivers/vidtv/vidtv_channel.c:423
vidtv_mux_init drivers/media/test-drivers/vidtv/vidtv_mux.c:519
vidtv_start_streaming drivers/media/test-drivers/vidtv/vidtv_bridge.c:194
vidtv_start_feed drivers/media/test-drivers/vidtv/vidtv_bridge.c:239
dmx_section_feed_start_filtering drivers/media/dvb-core/dvb_demux.c:973
dvb_dmxdev_feed_start drivers/media/dvb-core/dmxdev.c:508 [inline]
dvb_dmxdev_feed_restart.isra.0 drivers/media/dvb-core/dmxdev.c:537
dvb_dmxdev_filter_stop+0x2b4/0x3a0 drivers/media/dvb-core/dmxdev.c:564
dvb_dmxdev_filter_free drivers/media/dvb-core/dmxdev.c:840 [inline]
dvb_demux_release+0x92/0x550 drivers/media/dvb-core/dmxdev.c:1246
__fput+0x3ff/0xb70 fs/file_tabl
—truncated—

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-38233

Published : July 4, 2025, 2:15 p.m. | 4 hours, 57 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

powerpc64/ftrace: fix clobbered r15 during livepatching

While r15 is clobbered always with PPC_FTRACE_OUT_OF_LINE, it is
not restored in livepatch sequence leading to not so obvious fails
like below:

BUG: Unable to handle kernel data access on write at 0xc0000000000f9078
Faulting instruction address: 0xc0000000018ff958
Oops: Kernel access of bad area, sig: 11 [#1]

NIP: c0000000018ff958 LR: c0000000018ff930 CTR: c0000000009c0790
REGS: c00000005f2e7790 TRAP: 0300 Tainted: G K (6.14.0+)
MSR: 8000000000009033 CR: 2822880b XER: 20040000
CFAR: c0000000008addc0 DAR: c0000000000f9078 DSISR: 0a000000 IRQMASK: 1
GPR00: c0000000018f2584 c00000005f2e7a30 c00000000280a900 c000000017ffa488
GPR04: 0000000000000008 0000000000000000 c0000000018f24fc 000000000000000d
GPR08: fffffffffffe0000 000000000000000d 0000000000000000 0000000000008000
GPR12: c0000000009c0790 c000000017ffa480 c00000005f2e7c78 c0000000000f9070
GPR16: c00000005f2e7c90 0000000000000000 0000000000000000 0000000000000000
GPR20: 0000000000000000 c00000005f3efa80 c00000005f2e7c60 c00000005f2e7c88
GPR24: c00000005f2e7c60 0000000000000001 c0000000000f9078 0000000000000000
GPR28: 00007fff97960000 c000000017ffa480 0000000000000000 c0000000000f9078

Call Trace:
check_heap_object+0x34/0x390 (unreliable)
__mutex_unlock_slowpath.isra.0+0xe4/0x230
seq_read_iter+0x430/0xa90
proc_reg_read_iter+0xa4/0x200
vfs_read+0x41c/0x510
ksys_read+0xa4/0x190
system_call_exception+0x1d0/0x440
system_call_vectored_common+0x15c/0x2ec

Fix it by restoring r15 always.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-38230

Published : July 4, 2025, 2:15 p.m. | 4 hours, 57 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

jfs: validate AG parameters in dbMount() to prevent crashes

Validate db_agheight, db_agwidth, and db_agstart in dbMount to catch
corrupted metadata early and avoid undefined behavior in dbAllocAG.
Limits are derived from L2LPERCTL, LPERCTL/MAXAG, and CTLTREESIZE:

– agheight: 0 to L2LPERCTL/2 (0 to 5) ensures shift
(L2LPERCTL – 2*agheight) >= 0.
– agwidth: 1 to min(LPERCTL/MAXAG, 2^(L2LPERCTL – 2*agheight))
ensures agperlev >= 1.
– Ranges: 1-8 (agheight 0-3), 1-4 (agheight 4), 1 (agheight 5).
– LPERCTL/MAXAG = 1024/128 = 8 limits leaves per AG;
2^(10 – 2*agheight) prevents division to 0.
– agstart: 0 to CTLTREESIZE-1 – agwidth*(MAXAG-1) keeps ti within
stree (size 1365).
– Ranges: 0-1237 (agwidth 1), 0-348 (agwidth 8).

UBSAN: shift-out-of-bounds in fs/jfs/jfs_dmap.c:1400:9
shift exponent -335544310 is negative
CPU: 0 UID: 0 PID: 5822 Comm: syz-executor130 Not tainted 6.14.0-rc5-syzkaller #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025
Call Trace:

__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_shift_out_of_bounds+0x3c8/0x420 lib/ubsan.c:468
dbAllocAG+0x1087/0x10b0 fs/jfs/jfs_dmap.c:1400
dbDiscardAG+0x352/0xa20 fs/jfs/jfs_dmap.c:1613
jfs_ioc_trim+0x45a/0x6b0 fs/jfs/jfs_discard.c:105
jfs_ioctl+0x2cd/0x3e0 fs/jfs/ioctl.c:131
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f

Found by Linux Verification Center (linuxtesting.org) with Syzkaller.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-38229

Published : July 4, 2025, 2:15 p.m. | 4 hours, 57 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

media: cxusb: no longer judge rbuf when the write fails

syzbot reported a uninit-value in cxusb_i2c_xfer. [1]

Only when the write operation of usb_bulk_msg() in dvb_usb_generic_rw()
succeeds and rlen is greater than 0, the read operation of usb_bulk_msg()
will be executed to read rlen bytes of data from the dvb device into the
rbuf.

In this case, although rlen is 1, the write operation failed which resulted
in the dvb read operation not being executed, and ultimately variable i was
not initialized.

[1]
BUG: KMSAN: uninit-value in cxusb_gpio_tuner drivers/media/usb/dvb-usb/cxusb.c:124 [inline]
BUG: KMSAN: uninit-value in cxusb_i2c_xfer+0x153a/0x1a60 drivers/media/usb/dvb-usb/cxusb.c:196
cxusb_gpio_tuner drivers/media/usb/dvb-usb/cxusb.c:124 [inline]
cxusb_i2c_xfer+0x153a/0x1a60 drivers/media/usb/dvb-usb/cxusb.c:196
__i2c_transfer+0xe25/0x3150 drivers/i2c/i2c-core-base.c:-1
i2c_transfer+0x317/0x4a0 drivers/i2c/i2c-core-base.c:2315
i2c_transfer_buffer_flags+0x125/0x1e0 drivers/i2c/i2c-core-base.c:2343
i2c_master_send include/linux/i2c.h:109 [inline]
i2cdev_write+0x210/0x280 drivers/i2c/i2c-dev.c:183
do_loop_readv_writev fs/read_write.c:848 [inline]
vfs_writev+0x963/0x14e0 fs/read_write.c:1057
do_writev+0x247/0x5c0 fs/read_write.c:1101
__do_sys_writev fs/read_write.c:1169 [inline]
__se_sys_writev fs/read_write.c:1166 [inline]
__x64_sys_writev+0x98/0xe0 fs/read_write.c:1166
x64_sys_call+0x2229/0x3c80 arch/x86/include/generated/asm/syscalls_64.h:21
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x1e0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-38228

Published : July 4, 2025, 2:15 p.m. | 4 hours, 57 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

media: imagination: fix a potential memory leak in e5010_probe()

Add video_device_release() to release the memory allocated by
video_device_alloc() if something goes wrong.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-38234

Published : July 4, 2025, 2:15 p.m. | 4 hours, 57 minutes ago

Description : In the Linux kernel, the following vulnerability has been resolved:

sched/rt: Fix race in push_rt_task

Overview
========
When a CPU chooses to call push_rt_task and picks a task to push to
another CPU’s runqueue then it will call find_lock_lowest_rq method
which would take a double lock on both CPUs’ runqueues. If one of the
locks aren’t readily available, it may lead to dropping the current
runqueue lock and reacquiring both the locks at once. During this window
it is possible that the task is already migrated and is running on some
other CPU. These cases are already handled. However, if the task is
migrated and has already been executed and another CPU is now trying to
wake it up (ttwu) such that it is queued again on the runqeue
(on_rq is 1) and also if the task was run by the same CPU, then the
current checks will pass even though the task was migrated out and is no
longer in the pushable tasks list.

Crashes
=======
This bug resulted in quite a few flavors of crashes triggering kernel
panics with various crash signatures such as assert failures, page
faults, null pointer dereferences, and queue corruption errors all
coming from scheduler itself.

Some of the crashes:
-> kernel BUG at kernel/sched/rt.c:1616! BUG_ON(idx >= MAX_RT_PRIO)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? pick_next_task_rt+0x6e/0x1d0
? do_error_trap+0x64/0xa0
? pick_next_task_rt+0x6e/0x1d0
? exc_invalid_op+0x4c/0x60
? pick_next_task_rt+0x6e/0x1d0
? asm_exc_invalid_op+0x12/0x20
? pick_next_task_rt+0x6e/0x1d0
__schedule+0x5cb/0x790
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb

-> BUG: kernel NULL pointer dereference, address: 00000000000000c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? __warn+0x8a/0xe0
? exc_page_fault+0x3d6/0x520
? asm_exc_page_fault+0x1e/0x30
? pick_next_task_rt+0xb5/0x1d0
? pick_next_task_rt+0x8c/0x1d0
__schedule+0x583/0x7e0
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb

-> BUG: unable to handle page fault for address: ffff9464daea5900
kernel BUG at kernel/sched/rt.c:1861! BUG_ON(rq->cpu != task_cpu(p))

-> kernel BUG at kernel/sched/rt.c:1055! BUG_ON(!rq->nr_running)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? dequeue_top_rt_rq+0xa2/0xb0
? do_error_trap+0x64/0xa0
? dequeue_top_rt_rq+0xa2/0xb0
? exc_invalid_op+0x4c/0x60
? dequeue_top_rt_rq+0xa2/0xb0
? asm_exc_invalid_op+0x12/0x20
? dequeue_top_rt_rq+0xa2/0xb0
dequeue_rt_entity+0x1f/0x70
dequeue_task_rt+0x2d/0x70
__schedule+0x1a8/0x7e0
? blk_finish_plug+0x25/0x40
schedule+0x3c/0xb0
futex_wait_queue_me+0xb6/0x120
futex_wait+0xd9/0x240
do_futex+0x344/0xa90
? get_mm_exe_file+0x30/0x60
? audit_exe_compare+0x58/0x70
? audit_filter_rules.constprop.26+0x65e/0x1220
__x64_sys_futex+0x148/0x1f0
do_syscall_64+0x30/0x80
entry_SYSCALL_64_after_hwframe+0x62/0xc7

-> BUG: unable to handle page fault for address: ffff8cf3608bc2c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? spurious_kernel_fault+0x171/0x1c0
? exc_page_fault+0x3b6/0x520
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? asm_exc_page_fault+0x1e/0x30
? _cond_resched+0x15/0x30
? futex_wait_queue_me+0xc8/0x120
? futex_wait+0xd9/0x240
? try_to_wake_up+0x1b8/0x490
? futex_wake+0x78/0x160
? do_futex+0xcd/0xa90
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? plist_del+0x6a/0xd0
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? dequeue_pushable_task+0x20/0x70
? __schedule+0x382/0x7e0
? asm_sysvec_reschedule_i
—truncated—

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-46733

Published : July 4, 2025, 2:15 p.m. | 4 hours, 57 minutes ago

Description : OP-TEE is a Trusted Execution Environment (TEE) designed as companion to a non-secure Linux kernel running on Arm; Cortex-A cores using the TrustZone technology. In version 4.5.0, using a specially crafted tee-supplicant binary running in REE userspace, an attacker can trigger a panic in a TA that uses the libutee Secure Storage API. Many functions in libutee, specifically those which make up the Secure Storage API, will panic if a system call returns an unexpected return code. This behavior is mandated by the TEE Internal Core API specification. However, in OP-TEE’s implementation, return codes of secure storage operations are passed through unsanitized from the REE tee-supplicant, through the Linux kernel tee-driver, through the OP-TEE kernel, back to libutee. Thus, an attacker with access to REE userspace, and the ability to stop tee-supplicant and replace it with their own process (generally trivial for a root user, and depending on the way permissions are set up, potentially available even to less privileged users) can run a malicious tee-supplicant process that responds to storage requests with unexpected response codes, triggering a panic in the requesting TA. This is particularly dangerous for TAs built with `TA_FLAG_SINGLE_INSTANCE` (corresponding to `gpd.ta.singleInstance` and `TA_FLAG_INSTANCE_KEEP_ALIVE` (corresponding to `gpd.ta.keepAlive`). The behavior of these TAs may depend on memory that is preserved between sessions, and the ability of an attacker to panic the TA and reload it with a clean memory space can compromise the behavior of those TAs. A critical example of this is the optee_ftpm TA. It uses the kept alive memory to hold PCR values, which crucially must be non-resettable. An attacker who can trigger a panic in the fTPM TA can reset the PCRs, and then extend them PCRs with whatever they choose, falsifying boot measurements, accessing sealed data, and potentially more. The impact of this issue depends significantly on the behavior of affected TAs. For some, it could manifest as a denial of service, while for others, like the fTPM TA, it can result in the disclosure of sensitive data. Anyone running the fTPM TA is affected, but similar attacks may be possible on other TAs that leverage the Secure Storage API. A fix is available in commit 941a58d78c99c4754fbd4ec3079ec9e1d596af8f.

Severity: 7.9 | HIGH

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-49601

Published : July 4, 2025, 3:15 p.m. | 3 hours, 57 minutes ago

Description : In MbedTLS 3.3.0 before 3.6.4, mbedtls_lms_import_public_key does not check that the input buffer is at least 4 bytes before reading a 32-bit field, allowing a possible out-of-bounds read on truncated input. Specifically, an out-of-bounds read in mbedtls_lms_import_public_key allows context-dependent attackers to trigger a crash or limited adjacent-memory disclosure by supplying a truncated LMS (Leighton-Micali Signature) public-key buffer under four bytes. An LMS public key starts with a 4-byte type indicator. The function mbedtls_lms_import_public_key reads this type indicator before validating the size of its input.

Severity: 4.8 | MEDIUM

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-52496

Published : July 4, 2025, 3:15 p.m. | 3 hours, 57 minutes ago

Description : Mbed TLS before 3.6.4 has a race condition in AESNI detection if certain compiler optimizations occur. An attacker may be able to extract an AES key from a multithreaded program, or perform a GCM forgery.

Severity: 7.8 | HIGH

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-52497

Published : July 4, 2025, 3:15 p.m. | 3 hours, 57 minutes ago

Description : Mbed TLS before 3.6.4 has a PEM parsing one-byte heap-based buffer underflow, in mbedtls_pem_read_buffer and two mbedtls_pk_parse functions, via untrusted PEM input.

Severity: 4.8 | MEDIUM

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-49600

Published : July 4, 2025, 3:15 p.m. | 3 hours, 57 minutes ago

Description : In MbedTLS 3.3.0 before 3.6.4, mbedtls_lms_verify may accept invalid signatures if hash computation fails and internal errors go unchecked, enabling LMS (Leighton-Micali Signature) forgery in a fault scenario. Specifically, unchecked return values in mbedtls_lms_verify allow an attacker (who can induce a hardware hash accelerator fault) to bypass LMS signature verification by reusing stale stack data, resulting in acceptance of an invalid signature. In mbedtls_lms_verify, the return values of the internal Merkle tree functions create_merkle_leaf_value and create_merkle_internal_value are not checked. These functions return an integer that indicates whether the call succeeded or not. If a failure occurs, the output buffer (Tc_candidate_root_node) may remain uninitialized, and the result of the signature verification is unpredictable. When the software implementation of SHA-256 is used, these functions will not fail. However, with hardware-accelerated hashing, an attacker could use fault injection against the accelerator to bypass verification.

Severity: 4.9 | MEDIUM

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-53481

Published : July 4, 2025, 4:15 p.m. | 2 hours, 57 minutes ago

Description : Uncontrolled Resource Consumption vulnerability in Wikimedia Foundation Mediawiki – IPInfo Extension allows Excessive Allocation.This issue affects Mediawiki – IPInfo Extension: from 1.39.X before 1.39.13, from 1.42.X before 1.42.7, from 1.43.X before 1.43.2.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-53482

Published : July 4, 2025, 4:15 p.m. | 2 hours, 57 minutes ago

Description : Improper Neutralization of Input During Web Page Generation (XSS or ‘Cross-site Scripting’) vulnerability in Wikimedia Foundation Mediawiki – IPInfo Extension allows Cross-Site Scripting (XSS).This issue affects Mediawiki – IPInfo Extension: from 1.39.X before 1.39.13, from 1.42.X before 1.42.7, from 1.43.X before 1.43.2.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-53483

Published : July 4, 2025, 6:15 p.m. | 57 minutes ago

Description : ArchivePage.php, UnarchivePage.php, and VoterEligibilityPage#executeClear() do not validate request methods or CSRF tokens, allowing attackers to trigger sensitive actions if an admin visits a malicious site.

This issue affects Mediawiki – SecurePoll extension: from 1.39.X before 1.39.13, from 1.42.X before 1.42.7, from 1.43.X before 1.43.2.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-53484

Published : July 4, 2025, 6:15 p.m. | 57 minutes ago

Description : User-controlled inputs are improperly escaped in:

*
VotePage.php (poll option input)

*
ResultPage::getPagesTab() and getErrorsTab() (user-controllable page names)

This allows attackers to inject JavaScript and compromise user sessions under certain conditions.

This issue affects Mediawiki – SecurePoll extension: from 1.39.X before 1.39.13, from 1.42.X before 1.42.7, from 1.43.X before 1.43.2.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-53485

Published : July 4, 2025, 6:15 p.m. | 57 minutes ago

Description : SetTranslationHandler.php does not validate that the user is an election admin, allowing any (even unauthenticated) user to change election-related translation text. While partially broken in newer MediaWiki versions, the check is still missing.

This issue affects Mediawiki – SecurePoll extension: from 1.39.X before 1.39.13, from 1.42.X before 1.42.7, from 1.43.X before 1.43.2.

Severity: 0.0 | NA

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

CVE ID : CVE-2025-7067

Published : July 4, 2025, 6:15 p.m. | 57 minutes ago

Description : A vulnerability classified as problematic was found in HDF5 1.14.6. This vulnerability affects the function H5FS__sinfo_serialize_node_cb of the file src/H5FScache.c. The manipulation leads to heap-based buffer overflow. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used.

Severity: 3.3 | LOW

Visit the link for more details, such as CVSS details, affected products, timeline, and more…

The DistroWatch news feed is brought to you by TUXEDO COMPUTERS. Valeria Fadeeva has announced the release of a new version of Melawy Linux, an Arch-based desktop Linux distribution with a customised KDE Plasma as the preferred desktop. The new version, labelled as 2025.07.04, comes with updated packages as well as various important changes. Most notably, the distribution now….

Duizenden NetScaler-servers kwetsbaar voor CitrixBleed2, details snel openbaar

Duizenden NetScaler-servers bevatten nog altijd een kritieke kwetsbaarheid aangeduid als “CitrixBleed2”, waardoor ze in het ergste geval zijn over te nemen, en een securitybedrijf heeft aangegeven vol …
Read more

Published Date:
Jul 04, 2025 (4 hours, 23 minutes ago)

Vulnerabilities has been mentioned in this article.

CVE-2025-6543

CVE-2025-5777