Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Double-Edged Sustainability Sword Of AI In Web Design

      August 20, 2025

      Top 12 Reasons Enterprises Choose Node.js Development Services for Scalable Growth

      August 20, 2025

      GitHub’s coding agent can now be launched from anywhere on platform using new Agents panel

      August 20, 2025

      Stop writing tests: Automate fully with Generative AI

      August 19, 2025

      I’m a diehard Pixel fan, but I’m not upgrading to the Pixel 10. Here’s why

      August 21, 2025

      Google Pixel Watch 4 vs. Samsung Galaxy Watch 8: I compared the two best Androids, and here’s the winner

      August 21, 2025

      Get a free Amazon gift card up to $300 when you preorder a new Google Pixel 10 phone – here’s how

      August 21, 2025

      Everything announced at Made by Google 2025: Pixel 10 Pro, Fold, Watch 4, and more

      August 21, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Copy Errors as Markdown to Share With AI in Laravel 12.25

      August 21, 2025
      Recent

      Copy Errors as Markdown to Share With AI in Laravel 12.25

      August 21, 2025

      Deconstructing the Request Lifecycle in Sitecore Headless – Part 2: SSG and ISR Modes in Next.js

      August 20, 2025

      Susan Etlinger, AI Analyst and Industry Watcher on Building Trust

      August 20, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      TerraMaster D1 SSD Plus Review: Experience a Faster External SSD

      August 20, 2025
      Recent

      TerraMaster D1 SSD Plus Review: Experience a Faster External SSD

      August 20, 2025

      Microsoft is investigating Windows 11 KB5063878 SSD data corruption/failure issue

      August 20, 2025

      Microsoft Surface Won’t Turn On: 6 Tested Solutions to Fix

      August 20, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Artificial Intelligence»Repurposing Protein Folding Models for Generation with Latent Diffusion

    Repurposing Protein Folding Models for Generation with Latent Diffusion

    August 21, 2025
    Repurposing Protein Folding Models for Generation with Latent Diffusion



    PLAID is a multimodal generative model that simultaneously generates protein 1D sequence and 3D structure, by learning the latent space of protein folding models.

    The awarding of the 2024 Nobel Prize to AlphaFold2 marks an important moment of recognition for the of AI role in biology. What comes next after protein folding?

    In PLAID, we develop a method that learns to sample from the latent space of protein folding models to generate new proteins. It can accept compositional function and organism prompts, and can be trained on sequence databases, which are 2-4 orders of magnitude larger than structure databases. Unlike many previous protein structure generative models, PLAID addresses the multimodal co-generation problem setting: simultaneously generating both discrete sequence and continuous all-atom structural coordinates.

    From structure prediction to real-world drug design

    Though recent works demonstrate promise for the ability of diffusion models to generate proteins, there still exist limitations of previous models that make them impractical for real-world applications, such as:

    • All-atom generation: Many existing generative models only produce the backbone atoms. To produce the all-atom structure and place the sidechain atoms, we need to know the sequence. This creates a multimodal generation problem that requires simultaneous generation of discrete and continuous modalities.
    • Organism specificity: Proteins biologics intended for human use need to be humanized, to avoid being destroyed by the human immune system.
    • Control specification: Drug discovery and putting it into the hands of patients is a complex process. How can we specify these complex constraints? For example, even after the biology is tackled, you might decide that tablets are easier to transport than vials, adding a new constraint on soluability.

    Generating “useful” proteins

    Simply generating proteins is not as useful as controlling the generation to get useful proteins. What might an interface for this look like?



    For inspiration, let’s consider how we’d control image generation via compositional textual prompts (example from Liu et al., 2022).

    In PLAID, we mirror this interface for control specification. The ultimate goal is to control generation entirely via a textual interface, but here we consider compositional constraints for two axes as a proof-of-concept: function and organism:



    Learning the function-structure-sequence connection. PLAID learns the tetrahedral cysteine-Fe2+/Fe3+ coordination pattern often found in metalloproteins, while maintaining high sequence-level diversity.

    Training using sequence-only training data

    Another important aspect of the PLAID model is that we only require sequences to train the generative model! Generative models learn the data distribution defined by its training data, and sequence databases are considerably larger than structural ones, since sequences are much cheaper to obtain than experimental structure.



    Learning from a larger and broader database. The cost of obtaining protein sequences is much lower than experimentally characterizing structure, and sequence databases are 2-4 orders of magnitude larger than structural ones.

    How does it work?

    The reason that we’re able to train the generative model to generate structure by only using sequence data is by learning a diffusion model over the latent space of a protein folding model. Then, during inference, after sampling from this latent space of valid proteins, we can take frozen weights from the protein folding model to decode structure. Here, we use ESMFold, a successor to the AlphaFold2 model which replaces a retrieval step with a protein language model.



    Our method. During training, only sequences are needed to obtain the embedding; during inference, we can decode sequence and structure from the sampled embedding. ❄️ denotes frozen weights.

    In this way, we can use structural understanding information in the weights of pretrained protein folding models for the protein design task. This is analogous to how vision-language-action (VLA) models in robotics make use of priors contained in vision-language models (VLMs) trained on internet-scale data to supply perception and reasoning and understanding information.

    Compressing the latent space of protein folding models

    A small wrinkle with directly applying this method is that the latent space of ESMFold – indeed, the latent space of many transformer-based models – requires a lot of regularization. This space is also very large, so learning this embedding ends up mapping to high-resolution image synthesis.

    To address this, we also propose CHEAP (Compressed Hourglass Embedding Adaptations of Proteins), where we learn a compression model for the joint embedding of protein sequence and structure.



    Investigating the latent space. (A) When we visualize the mean value for each channel, some channels exhibit “massive activations”. (B) If we start examining the top-3 activations compared to the median value (gray), we find that this happens over many layers. (C) Massive activations have also been observed for other transformer-based models.

    We find that this latent space is actually highly compressible. By doing a bit of mechanistic interpretability to better understand the base model that we are working with, we were able to create an all-atom protein generative model.

    What’s next?

    Though we examine the case of protein sequence and structure generation in this work, we can adapt this method to perform multi-modal generation for any modalities where there is a predictor from a more abundant modality to a less abundant one. As sequence-to-structure predictors for proteins are beginning to tackle increasingly complex systems (e.g. AlphaFold3 is also able to predict proteins in complex with nucleic acids and molecular ligands), it’s easy to imagine performing multimodal generation over more complex systems using the same method.
    If you are interested in collaborating to extend our method, or to test our method in the wet-lab, please reach out!

    Further links

    If you’ve found our papers useful in your research, please consider using the following BibTeX for PLAID and CHEAP:

    @article{lu2024generating,
      title={Generating All-Atom Protein Structure from Sequence-Only Training Data},
      author={Lu, Amy X and Yan, Wilson and Robinson, Sarah A and Yang, Kevin K and Gligorijevic, Vladimir and Cho, Kyunghyun and Bonneau, Richard and Abbeel, Pieter and Frey, Nathan},
      journal={bioRxiv},
      pages={2024--12},
      year={2024},
      publisher={Cold Spring Harbor Laboratory}
    }
    
    @article{lu2024tokenized,
      title={Tokenized and Continuous Embedding Compressions of Protein Sequence and Structure},
      author={Lu, Amy X and Yan, Wilson and Yang, Kevin K and Gligorijevic, Vladimir and Cho, Kyunghyun and Abbeel, Pieter and Bonneau, Richard and Frey, Nathan},
      journal={bioRxiv},
      pages={2024--08},
      year={2024},
      publisher={Cold Spring Harbor Laboratory}
    }
    

    You can also checkout our preprints (PLAID, CHEAP) and codebases (PLAID, CHEAP).

    Some bonus protein generation fun!



    Additional function-prompted generations with PLAID.




    Unconditional generation with PLAID.



    Transmembrane proteins have hydrophobic residues at the core, where it is embedded within the fatty acid layer. These are consistently observed when prompting PLAID with transmembrane protein keywords.



    Additional examples of active site recapitulation based on function keyword prompting.



    Comparing samples between PLAID and all-atom baselines. PLAID samples have better diversity and captures the beta-strand pattern that has been more difficult for protein generative models to learn.

    Acknowledgements

    Thanks to Nathan Frey for detailed feedback on this article, and to co-authors across BAIR, Genentech, Microsoft Research, and New York University: Wilson Yan, Sarah A. Robinson, Simon Kelow, Kevin K. Yang, Vladimir Gligorijevic, Kyunghyun Cho, Richard Bonneau, Pieter Abbeel, and Nathan C. Frey.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleDefending against Prompt Injection with Structured Queries (StruQ) and Preference Optimization (SecAlign)
    Next Article Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

    Related Posts

    Artificial Intelligence

    Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

    August 21, 2025
    Defending against Prompt Injection with Structured Queries (StruQ) and Preference Optimization (SecAlign)
    Artificial Intelligence

    Defending against Prompt Injection with Structured Queries (StruQ) and Preference Optimization (SecAlign)

    August 21, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CISA Warns of Linux Kernel Improper Ownership Management Vulnerability Exploited in Attacks

    Security

    CVE-2025-4648 – Centreon Web Reflected Cross-Site Scripting (XSS)

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-49841 – SoVITS-WebUI Unchecked Deserialization Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-46619 – Couchbase Server File Access Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    CVE-2025-5563 – WordPress WP-Addpub SQL Injection Vulnerability

    June 6, 2025

    CVE ID : CVE-2025-5563

    Published : June 6, 2025, 7:15 a.m. | 33 minutes ago

    Description : The WP-Addpub plugin for WordPress is vulnerable to SQL Injection via the ‘wp-addpub’ shortcode in all versions up to, and including, 1.2.8 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.

    Severity: 6.5 | MEDIUM

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Responsible AI for the payments industry – Part 2

    August 6, 2025

    Spotlighting Trailblazers in Tech: Three Perficient Leaders Honored As 2025 CRN Women of the Channel

    June 2, 2025

    CVE-2025-44612 – Tinxy WiFi Lock Controller Remote Information Disclosure

    May 30, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.