Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Designing With AI, Not Around It: Practical Advanced Techniques For Product Design Use Cases

      August 11, 2025

      Why Companies Are Investing in AI-Powered React.js Development Services in 2025

      August 11, 2025

      The coming AI smartphone: Redefining personal tech

      August 11, 2025

      Modern React animation libraries: Real examples for engaging UIs

      August 11, 2025

      How Debian 13’s little improvements add up to the distro’s surprisingly big leap forward

      August 11, 2025

      Why xAI is giving you ‘limited’ free access to Grok 4

      August 11, 2025

      How Apple may revamp Siri to a voice assistant I’d actually use (and ditch Gemini for)

      August 11, 2025

      I jump-started a bus from the 1930s with this power bank – here’s the verdict

      August 11, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Laravel’s UsePolicy Attribute: Explicit Authorization Control

      August 11, 2025
      Recent

      Laravel’s UsePolicy Attribute: Explicit Authorization Control

      August 11, 2025

      The Laravel Way to Build AI Agents That Actually Work

      August 11, 2025

      The Laravel Way to Build AI Agents That Actually Work

      August 11, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft sued over killing support for Windows 10

      August 11, 2025
      Recent

      Microsoft sued over killing support for Windows 10

      August 11, 2025

      Grok 4 rolled out for free-tier users worldwide, with some limits

      August 11, 2025

      Firefox AI slammed for hogging CPU and draining battery

      August 11, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Artificial Intelligence»New AI system uncovers hidden cell subtypes, boosts precision medicine

    New AI system uncovers hidden cell subtypes, boosts precision medicine

    August 11, 2025

    In order to produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors, because those differences impact how tumors respond to treatment.

    Part of this work requires a deep understanding of the RNA or protein molecules each cancer cell expresses, where it is located in the tumor, and what it looks like under a microscope.

    Traditionally, scientists have looked at one or more of these aspects separately, but now a new deep learning AI tool, CellLENS (Cell Local Environment and Neighborhood Scan), fuses all three domains together, using a combination of convolutional neural networks and graph neural networks to build a comprehensive digital profile for every single cell. This allows the system to group cells with similar biology — effectively separating even those that appear very similar in isolation, but behave differently depending on their surroundings.

    The study, published recently in Nature Immunology, details the results of a collaboration between researchers from MIT, Harvard Medical School, Yale University, Stanford University, and University of Pennsylvania — an effort led by Bokai Zhu, an MIT postdoc and member of the Broad Institute of MIT and Harvard and the Ragon Institute of MGH, MIT, and Harvard.

    Zhu explains the impact of this new tool: “Initially we would say, oh, I found a cell. This is called a T cell. Using the same dataset, by applying CellLENS, now I can say this is a T cell, and it is currently attacking a specific tumor boundary in a patient.

    “I can use existing information to better define what a cell is, what is the subpopulation of that cell, what that cell is doing, and what is the potential functional readout of that cell. This method may be used to identify a new biomarker, which provides specific and detailed information about diseased cells, allowing for more targeted therapy development.”

    This is a critical advance because current methodologies often miss critical molecular or contextual information — for example, immunotherapies may target cells that only exist at the boundary of a tumor, limiting efficacy. By using deep learning, the researchers can detect many different layers of information with CellLENS, including morphology and where the cell is spatially in a tissue.

    When applied to samples from healthy tissue and several types of cancer, including lymphoma and liver cancer, CellLENS uncovered rare immune cell subtypes and revealed how their activity and location relate to disease processes — such as tumor infiltration or immune suppression.

    These discoveries could help scientists better understand how the immune system interacts with tumors and pave the way for more precise cancer diagnostics and immunotherapies.

    “I’m extremely excited by the potential of new AI tools, like CellLENS, to help us more holistically understand aberrant cellular behaviors within tissues,” says co-author Alex K. Shalek, the director of the Institute for Medical Engineering and Science (IMES), the J. W. Kieckhefer Professor in IMES and Chemistry, and an extramural member of the Koch Institute for Integrative Cancer Research at MIT, as well as an Institute member of the Broad Institute and a member of the Ragon Institute. “We can now measure a tremendous amount of information about individual cells and their tissue contexts with cutting-edge, multi-omic assays. Effectively leveraging that data to nominate new therapeutic leads is a critical step in developing improved interventions. When coupled with the right input data and careful downsteam validations, such tools promise to accelerate our ability to positively impact human health and wellness.”

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleRoxy: The Fish Who Dreamed of the Ocean
    Next Article Repurposing Protein Folding Models for Generation with Latent Diffusion

    Related Posts

    Artificial Intelligence

    Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

    August 11, 2025
    Repurposing Protein Folding Models for Generation with Latent Diffusion
    Artificial Intelligence

    Repurposing Protein Folding Models for Generation with Latent Diffusion

    August 11, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Best Free and Open Source Alternatives to Progress Kemp LoadMaster

    Linux

    This Week in Laravel: Filament 4 Beta, AI Chat and Auth Packages

    Development

    Europe’s Skunk Works: How EISENHERZ is reinventing Defence-as-a-Service

    News & Updates

    CVE-2025-4744 – Apache Employee Record System Cross-Site Scripting Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    EasyNAS – Linux distribution designed for storage management

    April 9, 2025

    EasyNAS is a storage management system for home or small office. It uses openSUSE with…

    How to Build RAG AI Agents with TypeScript

    April 16, 2025

    CVE-2025-4922 – Nomad Prefix-Based ACL Policy Vulnerability (Insufficient ACL Resolution)

    June 11, 2025

    CVE-2025-54444 – Samsung Electronics MagicINFO 9 Server File Upload Code Injection Vulnerability

    July 23, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.