Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Microsoft Graph CLI to be retired

      September 2, 2025

      The state of DevOps and AI: Not just hype

      September 1, 2025

      A Breeze Of Inspiration In September (2025 Wallpapers Edition)

      August 31, 2025

      10 Top Generative AI Development Companies for Enterprise Node.js Projects

      August 30, 2025

      I asked AI to modify mission-critical code, and what happened next haunts me

      September 3, 2025

      Why you should delete your browser extensions right now – or do this to stay safe

      September 3, 2025

      Dolby Vision 2 comes with big upgrades – here’s which TVs get them first

      September 3, 2025

      This one small feature makes this travel charger my favorite for business trips

      September 3, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Laracon AU 2025 Talk Titles Revealed

      September 3, 2025
      Recent

      Laracon AU 2025 Talk Titles Revealed

      September 3, 2025

      Stop Writing Bad Controllers: Laravel Custom Collections Transform Your Code

      September 3, 2025

      Handle ownership relationships between Eloquent models with Laravel Ownable

      September 3, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Lenovo Legion Go 2 confirmed with Ryzen Z2 Extreme, 1200p OLED 144Hz display & 74Wh battery

      September 2, 2025
      Recent

      Lenovo Legion Go 2 confirmed with Ryzen Z2 Extreme, 1200p OLED 144Hz display & 74Wh battery

      September 2, 2025

      How to Open Ports in Firewall on Windows Server

      September 2, 2025

      Google TV Remote Not Working? 5 Quick Fixes

      September 2, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Vector Search Embeddings and RAG

    Vector Search Embeddings and RAG

    July 16, 2025

    This is Part 1 of a three-part series (links at the bottom).

    Traditional search engines and databases match based on keywords. These systems are fine when you’re looking for an exact or partial string match but fail when the goal is to find content that’s conceptually similar, not just textually identical.

    Vector search bridges this gap by representing content like text, images, or even audio as coordinates in a multidimensional space grouped by likeness, letting us compare meaning instead of exact terms. When paired with tools like vector indexes and Retrieval-Augmented Generation (RAG), this unlocks smarter, faster, and more scalable search systems.

    In this post, we’ll explore how vector embeddings work, how to measure similarity, and how RAG (Retrieval‑Augmented Generation) leverages them for smarter search.

    Vector Databases

    A vector database is a data store designed to keep each piece of unstructured content—text, images, audio, user events—as a high‑dimensional numeric vector and retrieve the items whose vectors are closest to a query vector. Because distance in this space reflects semantic similarity, these systems let you search by meaning (“forgot login credentials”) instead of exact wording or IDs.

    This similarity‑first model unlocks capabilities that conventional keyword or relational databases struggle with: grounding large‑language‑model chatbots in private documents (RAG), recommending products or media based on behavior or appearance, and finding visually or sonically similar assets in massive libraries.

    The rapid adoption of vector search by cloud providers, open‑source projects, and managed services signals its graduation from niche ML tooling to a standard layer in modern data stacks.

    Vector databases bridge this “semantic gap” by storing and retrieving objects (text, image, audio) as vector embeddings.

    Embeddings

    An embedding is a list of numbers that represents the meaning of a thing in a way a computer can understand—like GPS coordinates in a space where similar ideas are physically closer together.

    For example, “reset my password” and “forgot login credentials” might map to nearby points, even though they use different words.

    A modern embedding model (e.g., OpenAI text‑embedding‑3‑small) converts a sentence into a 1,536-dimensional vector. More dimensions mean more nuance but also more storage and compute to compare vectors.

    → car, vehicle, and automobile are close together, while banana is far away.
    "car" → [0.2, 0.5, -0.1, 0.8, ...] 
    "vehicle" → [0.3, 0.4, -0.2, 0.7, ...] 
    "automobile"→ [-0.1, 0.6, 0.2, 0.3, ...] 
    "banana" → [-0.1, 0.6, 0.2, 0.3, ...]

     

    Vector Vis

    Image Source: OpenDataScience

    Measuring Similarity

    Choosing the right distance metric determines how “close” two vectors are. The two most common metrics are:

    1. Cosine Similarity: measures how closely two vectors point in the same direction, ignoring length. Use it when you care about semantic meaning.
    2. Euclidean Distance: measures the straight-line distance between points. Best for image or pixel-based embeddings.

    Vector Indexing

    A vector index organizes embeddings into an approximate nearest neighbor (ANN) structure, grouping similar items for faster search.

    Vector Index
    Image Source: Medium

    Common vector indexes include:

    1. HNSW (Hierarchical Navigable Small World): a multi-layer graph that hops toward closer vectors for high performance and low latency.
    2. IVF (Inverted File): buckets vectors and checks only likely buckets during search, efficient for large datasets.
    3. MSTG (Multi-Scale Tree Graph): builds multiple levels of smaller clusters, combining tree and graph benefits for memory efficiency.

    Retrieval-Augmented Generation (RAG)

    Traditional language models generate answers based only on training data, which can be outdated. RAG combines language generation with live data retrieval. The system searches a knowledge base and uses that content to produce more accurate, context-grounded responses, reducing hallucinations and allowing instant updates without fine-tuning.

    Rag

    Image Source: Snorkel AI

    Conclusion

    We’ve explored the core building blocks of semantic search: vector embeddings, similarity metrics, vector indexes, and RAG. These concepts move us beyond keyword search into meaning-based retrieval. In Part 2, we’ll build a RAG foundation using Postgres, pgVector, and TypeScript scripts for embedding, chunking, and querying data.

    References

    • Part 2: Coming soon
    • Part 3: Coming soon
    • Repo: https://github.com/aberhamm/rag-chatbot-demo

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleUbuntu 25.10 Fixes the Dock’s Inconsistent Radii
    Next Article My favorite Bose products are on sale plus an extra 25% discount – if you buy refurbished

    Related Posts

    Development

    Laracon AU 2025 Talk Titles Revealed

    September 3, 2025
    Development

    Stop Writing Bad Controllers: Laravel Custom Collections Transform Your Code

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    The evolution of five of Adobe’s iconic icons

    Web Development

    France’s OVHcloud May Replace Microsoft Azure In Major EU Cloud Shake-Up

    Operating Systems

    Rilasciati GNOME 47.6 e GNOME 48.1: Aggiornamenti di Manutenzione dell’Ambiente Desktop GNOME

    Linux

    CVE-2025-55287 – Genealogy Family Tree Authenticated Stored Cross-Site Scripting

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Firefox Has a New Home: Mozilla Launches Dedicated Firefox.com Download Hub

    June 26, 2025

    Mozilla has quietly prepared a new homepage at firefox.com, where users can now download Firefox…

    Top 6 new features and changes coming to Windows 11 in August 2025 — from AI agents to redesigned BSOD screens

    July 25, 2025

    CVE-2025-6307 – Code-projects Online Shoe Store SQL Injection Vulnerability

    June 20, 2025

    CVE-2025-5651 – “Traffic Offense Reporting System Cross-Site Scripting Vulnerability”

    June 5, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.