Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Error’d: You Talkin’ to Me?

      September 20, 2025

      The Psychology Of Trust In AI: A Guide To Measuring And Designing For User Confidence

      September 20, 2025

      This week in AI updates: OpenAI Codex updates, Claude integration in Xcode 26, and more (September 19, 2025)

      September 20, 2025

      Report: The major factors driving employee disengagement in 2025

      September 20, 2025

      DistroWatch Weekly, Issue 1140

      September 21, 2025

      Distribution Release: DietPi 9.17

      September 21, 2025

      Development Release: Zorin OS 18 Beta

      September 19, 2025

      Distribution Release: IPFire 2.29 Core 197

      September 19, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      @ts-ignore is almost always the worst option

      September 22, 2025
      Recent

      @ts-ignore is almost always the worst option

      September 22, 2025

      MutativeJS v1.3.0 is out with massive performance gains

      September 22, 2025

      Student Performance Prediction System using Python Machine Learning (ML)

      September 21, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      DistroWatch Weekly, Issue 1140

      September 21, 2025
      Recent

      DistroWatch Weekly, Issue 1140

      September 21, 2025

      Distribution Release: DietPi 9.17

      September 21, 2025

      Hyprland Made Easy: Preconfigured Beautiful Distros

      September 20, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»New AI Framework Evaluates Where AI Should Automate vs. Augment Jobs, Says Stanford Study

    New AI Framework Evaluates Where AI Should Automate vs. Augment Jobs, Says Stanford Study

    June 23, 2025

    Redefining Job Execution with AI Agents

    AI agents are reshaping how jobs are performed by offering tools that execute complex, goal-directed tasks. Unlike static algorithms, these agents combine multi-step planning with software tools to handle entire workflows across various sectors, including education, law, finance, and logistics. Their integration is no longer theoretical—workers are already applying them to support a variety of professional duties. The result is a labor environment in transition, where the boundaries of human and machine collaboration are being redefined on a daily basis.

    Bridging the Gap Between AI Capability and Worker Preference

    A persistent problem in this transformation is the disconnect between what AI agents can do and what workers want them to do. Even if AI systems are technically capable of taking over a task, workers may not support that shift due to concerns about job satisfaction, task complexity, or the importance of human judgment. Meanwhile, tasks that workers are eager to offload may lack mature AI solutions. This mismatch presents a significant barrier to the responsible and effective deployment of AI in the workforce.

    Beyond Software Engineers: A Holistic Workforce Assessment

    Until recently, assessments of AI adoption often centered on a handful of roles, such as software engineering or customer service, limiting understanding of how AI impacts broader occupational diversity. Most of these approaches also prioritized company productivity over worker experience. They relied on an analysis of current usage patterns, which does not provide a forward-looking view. As a result, the development of AI tools has lacked a comprehensive foundation grounded in the actual preferences and needs of people performing the work.

    Stanford’s Survey-Driven WORKBank Database: Capturing Real Worker Voices

    The research team from Stanford University introduced a survey-based auditing framework that evaluates which tasks workers would prefer to see automated or augmented and compares this with expert assessments of AI capability. Using task data from the U.S. Department of Labor’s O*NET database, researchers created the WORKBank, a dataset based on responses from 1,500 domain workers and evaluations from 52 AI experts. The team employed audio-supported mini-interviews to collect nuanced preferences. It introduced the Human Agency Scale (HAS), a five-level metric that captures the desired extent of human involvement in task completion.

    Human Agency Scale (HAS): Measuring the Right Level of AI Involvement

    At the center of this framework is the Human Agency Scale, which ranges from H1 (full AI control) to H5 (complete human control). This approach recognizes that not all tasks benefit from full automation, nor should every AI tool aim for it. For example, tasks rated H1 or H2—like transcribing data or generating routine reports—are well-suited for independent AI execution. Meanwhile, tasks such as planning training programs or participating in security-related discussions were often rated at H4 or H5, reflecting the high demand for human oversight. The researchers gathered dual inputs: workers rated their desire for automation and preferred HAS level for each task, while experts evaluated AI’s current capability for that task.

    Insights from WORKBank: Where Workers Embrace or Resist AI

    The results from the WORKBank database revealed clear patterns. Approximately 46.1% of tasks received a high desire for automation from workers, particularly those viewed as low-value or repetitive. Conversely, significant resistance was found in tasks involving creativity or interpersonal dynamics, regardless of AI’s technical ability to perform them. By overlaying worker preferences and expert capabilities, tasks were divided into four zones: the Automation “Green Light” Zone (high capability and high desire), Automation “Red Light” Zone (high capability but low desire), R&D Opportunity Zone (low capability but high desire), and Low Priority Zone (low desire and low capability). 41% of tasks aligned with companies funded by Y Combinator fell into the Low Priority or Red Light zones, indicating a potential misalignment between startup investments and worker needs.

    Toward Responsible AI Deployment in the Workforce

    This research offers a clear picture of how AI integration can be approached more responsibly. The Stanford team uncovered not only where automation is technically feasible but also where workers are receptive to it. Their task-level framework extends beyond technical readiness to encompass human values, making it a valuable tool for AI development, labor policy, and workforce training strategies.

    TL;DR:

    This paper introduces WORKBank, a large-scale dataset combining worker preferences and AI expert assessments across 844 tasks and 104 occupations, to evaluate where AI agents should automate or augment work. Using a novel Human Agency Scale (HAS), the study reveals a complex automation landscape, highlighting a misalignment between technical capability and worker desire. Findings show that workers welcome automation for repetitive tasks but resist it in roles requiring creativity or interpersonal skills. The framework offers actionable insights for responsible AI deployment aligned with human values.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post New AI Framework Evaluates Where AI Should Automate vs. Augment Jobs, Says Stanford Study appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleBuild an agentic multimodal AI assistant with Amazon Nova and Amazon Bedrock Data Automation
    Next Article Font Selection Guidelines

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Microsoft Copilot for Power Platform

    Development

    JavaScript vs C#: How to Choose the Right Language as a Beginner

    Development

    “Best practice” is just your opinion

    Web Development

    Sam Altman claims Meta is trying to poach OpenAI staffers with $100 million bonuses, but “none of our best people have decided to take them up on that”

    News & Updates

    Highlights

    The power of spread and rest patterns in JavaScript

    May 5, 2025

    Comments Source: Read More 

    “Yes caviar is great, here’s a ham sandwich”

    May 31, 2025

    15,000 Fake TikTok Shop Domains Deliver Malware, Steal Crypto via AI-Driven Scam Campaign

    August 5, 2025

    CVE-2024-46899 – Hitachi Ops Center Analyzer Viewpoint OVF Authentication Credentials Leakage Vulnerability

    April 22, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.