Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      This week in AI dev tools: Gemini 2.5 Pro and Flash GA, GitHub Copilot Spaces, and more (June 20, 2025)

      June 20, 2025

      Gemini 2.5 Pro and Flash are generally available and Gemini 2.5 Flash-Lite preview is announced

      June 19, 2025

      CSS Cascade Layers Vs. BEM Vs. Utility Classes: Specificity Control

      June 19, 2025

      IBM launches new integration to help unify AI security and governance

      June 18, 2025

      “We’re creating a game that’s steeped in dark fantasy elements” — Capcom talks building a samurai adventure with Onimusha: Way of the Sword

      June 22, 2025

      I tested this beastly gaming laptop with flawless performance — but I’m obsessed with a different feature

      June 22, 2025

      I changed 10 settings on my Fire TV for better performance and fewer distractions

      June 22, 2025

      I love that transparent technology is making a comeback — and one of the biggest gaming companies has joined the fun

      June 21, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Understanding JavaScript Promise

      June 22, 2025
      Recent

      Understanding JavaScript Promise

      June 22, 2025

      Lakeflow: Revolutionizing SCD2 Pipelines with Change Data Capture (CDC)

      June 21, 2025

      vitorccs/laravel-csv

      June 21, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      “We’re creating a game that’s steeped in dark fantasy elements” — Capcom talks building a samurai adventure with Onimusha: Way of the Sword

      June 22, 2025
      Recent

      “We’re creating a game that’s steeped in dark fantasy elements” — Capcom talks building a samurai adventure with Onimusha: Way of the Sword

      June 22, 2025

      I tested this beastly gaming laptop with flawless performance — but I’m obsessed with a different feature

      June 22, 2025

      6 Best Free and Open Source Graphical Data Hashing Tools

      June 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Building Production-Ready Custom AI Agents for Enterprise Workflows with Monitoring, Orchestration, and Scalability

    Building Production-Ready Custom AI Agents for Enterprise Workflows with Monitoring, Orchestration, and Scalability

    June 22, 2025

    In this tutorial, we walk you through the design and implementation of a custom agent framework built on PyTorch and key Python tooling, ranging from web intelligence and data science modules to advanced code generators. We’ll learn how to wrap core functionalities in monitored CustomTool classes, orchestrate multiple agents with tailored system prompts, and define end-to-end workflows that automate tasks like competitive website analysis and data-processing pipelines. Along the way, we demonstrate real-world examples, complete with retry logic, logging, and performance metrics, so you can confidently deploy and scale these agents within your organization’s existing infrastructure.

    Copy CodeCopiedUse a different Browser
    !pip install -q torch transformers datasets pillow requests beautifulsoup4 pandas numpy scikit-learn openai
    
    
    import os, json, asyncio, threading, time
    import torch, pandas as pd, numpy as np
    from PIL import Image
    import requests
    from io import BytesIO, StringIO
    from concurrent.futures import ThreadPoolExecutor
    from functools import wraps, lru_cache
    from typing import Dict, List, Optional, Any, Callable, Union
    import logging
    from dataclasses import dataclass
    import inspect
    
    
    logging.basicConfig(level=logging.INFO)
    logger = logging.getLogger(__name__)
    
    
    API_TIMEOUT = 15
    MAX_RETRIES = 3

    We begin by installing and importing all the core libraries, including PyTorch and Transformers, as well as data handling libraries such as pandas and NumPy, and utilities like BeautifulSoup for web scraping and scikit-learn for machine learning. We configure a standardized logging setup to capture information and error messages, and define global constants for API timeouts and retry limits, ensuring our tools behave predictably in production.

    Copy CodeCopiedUse a different Browser
    @dataclass
    class ToolResult:
       """Standardized tool result structure"""
       success: bool
       data: Any
       error: Optional[str] = None
       execution_time: float = 0.0
       metadata: Dict[str, Any] = None
    
    
    class CustomTool:
       """Base class for custom tools"""
       def __init__(self, name: str, description: str, func: Callable):
           self.name = name
           self.description = description
           self.func = func
           self.calls = 0
           self.avg_execution_time = 0.0
           self.error_rate = 0.0
          
       def execute(self, *args, **kwargs) -> ToolResult:
           """Execute tool with monitoring"""
           start_time = time.time()
           self.calls += 1
          
           try:
               result = self.func(*args, **kwargs)
               execution_time = time.time() - start_time
              
               self.avg_execution_time = ((self.avg_execution_time * (self.calls - 1)) + execution_time) / self.calls
              
               return ToolResult(
                   success=True,
                   data=result,
                   execution_time=execution_time,
                   metadata={'tool_name': self.name, 'call_count': self.calls}
               )
           except Exception as e:
               execution_time = time.time() - start_time
               self.error_rate = (self.error_rate * (self.calls - 1) + 1) / self.calls
              
               logger.error(f"Tool {self.name} failed: {str(e)}")
               return ToolResult(
                   success=False,
                   data=None,
                   error=str(e),
                   execution_time=execution_time,
                   metadata={'tool_name': self.name, 'call_count': self.calls}
               )

    We define a ToolResult dataclass to encapsulate every execution’s outcome, whether it succeeded, how long it took, any returned data, and error details if it failed. Our CustomTool base class then wraps individual functions with a unified execute method that tracks call counts, measures execution time, computes an average runtime, and logs any errors. By standardizing tool results and performance metrics this way, we ensure consistency and observability across all our custom utilities.

    Copy CodeCopiedUse a different Browser
    class CustomAgent:
       """Custom agent implementation with tool management"""
       def __init__(self, name: str, system_prompt: str = "", max_iterations: int = 5):
           self.name = name
           self.system_prompt = system_prompt
           self.max_iterations = max_iterations
           self.tools = {}
           self.conversation_history = []
           self.performance_metrics = {}
          
       def add_tool(self, tool: CustomTool):
           """Add a tool to the agent"""
           self.tools[tool.name] = tool
          
       def run(self, task: str) -> Dict[str, Any]:
           """Execute a task using available tools"""
           logger.info(f"Agent {self.name} executing task: {task}")
          
           task_lower = task.lower()
           results = []
          
           if any(keyword in task_lower for keyword in ['analyze', 'website', 'url', 'web']):
               if 'advanced_web_intelligence' in self.tools:
                   import re
                   url_pattern = r'https?://[^s]+'
                   urls = re.findall(url_pattern, task)
                   if urls:
                       result = self.tools['advanced_web_intelligence'].execute(urls[0])
                       results.append(result)
                      
           elif any(keyword in task_lower for keyword in ['data', 'analyze', 'stats', 'csv']):
               if 'advanced_data_science_toolkit' in self.tools:
                   if 'name,age,salary' in task:
                       data_start = task.find('name,age,salary')
                       data_part = task[data_start:]
                       result = self.tools['advanced_data_science_toolkit'].execute(data_part, 'stats')
                       results.append(result)
                      
           elif any(keyword in task_lower for keyword in ['generate', 'code', 'api', 'client']):
               if 'advanced_code_generator' in self.tools:
                   result = self.tools['advanced_code_generator'].execute(task)
                   results.append(result)
          
           return {
               'agent': self.name,
               'task': task,
               'results': [r.data if r.success else {'error': r.error} for r in results],
               'execution_summary': {
                   'tools_used': len(results),
                   'success_rate': sum(1 for r in results if r.success) / len(results) if results else 0,
                   'total_time': sum(r.execution_time for r in results)
               }
           }

    We encapsulate our AI logic in a CustomAgent class that holds a set of tools, a system prompt, and execution history, then routes each incoming task to the right tool based on simple keyword matching. In the run() method, we log the task, select the appropriate tool (web intelligence, data analysis, or code generation), execute it, and aggregate the results into a standardized response that includes success rates and timing metrics. This design enables us to easily extend agents by adding new tools and maintains our orchestration as both transparent and measurable.

    Copy CodeCopiedUse a different Browser
    print("🏗 Building Advanced Tool Architecture")
    
    
    def performance_monitor(func):
       """Decorator for monitoring tool performance"""
       @wraps(func)
       def wrapper(*args, **kwargs):
           start_time = time.time()
           try:
               result = func(*args, **kwargs)
               execution_time = time.time() - start_time
               logger.info(f"{func.__name__} executed in {execution_time:.2f}s")
               return result
           except Exception as e:
               logger.error(f"{func.__name__} failed: {str(e)}")
               raise
       return wrapper
    
    
    @performance_monitor
    def advanced_web_intelligence(url: str, analysis_type: str = "comprehensive") -> Dict[str, Any]:
       """
       Advanced web intelligence gathering with multiple analysis modes.
      
       Args:
           url: Target URL for analysis
           analysis_type: Type of analysis (comprehensive, sentiment, technical, seo)
      
       Returns:
           Dict containing structured analysis results
       """
       try:
           response = requests.get(url, timeout=API_TIMEOUT, headers={
               'User-Agent': 'Mozilla/5.0'
           })
          
           from bs4 import BeautifulSoup
           soup = BeautifulSoup(response.content, 'html.parser')
          
           title = soup.find('title').text if soup.find('title') else 'No title'
           meta_desc = soup.find('meta', attrs={'name': 'description'})
           meta_desc = meta_desc.get('content') if meta_desc else 'No description'
          
           if analysis_type == "comprehensive":
               return {
                   'title': title,
                   'description': meta_desc,
                   'word_count': len(soup.get_text().split()),
                   'image_count': len(soup.find_all('img')),
                   'link_count': len(soup.find_all('a')),
                   'headers': [h.text.strip() for h in soup.find_all(['h1', 'h2', 'h3'])[:5]],
                   'status_code': response.status_code,
                   'content_type': response.headers.get('content-type', 'unknown'),
                   'page_size': len(response.content)
               }
           elif analysis_type == "sentiment":
               text = soup.get_text()[:2000] 
               positive_words = ['good', 'great', 'excellent', 'amazing', 'wonderful', 'fantastic']
               negative_words = ['bad', 'terrible', 'awful', 'horrible', 'disappointing']
              
               pos_count = sum(text.lower().count(word) for word in positive_words)
               neg_count = sum(text.lower().count(word) for word in negative_words)
              
               return {
                   'sentiment_score': pos_count - neg_count,
                   'positive_indicators': pos_count,
                   'negative_indicators': neg_count,
                   'text_sample': text[:200],
                   'analysis_type': 'sentiment'
               }
              
       except Exception as e:
           return {'error': f"Analysis failed: {str(e)}"}
    
    
    @performance_monitor
    def advanced_data_science_toolkit(data: str, operation: str) -> Dict[str, Any]:
       """
       Comprehensive data science operations with statistical analysis.
      
       Args:
           data: CSV-like string or JSON data
           operation: Type of analysis (stats, correlation, forecast, clustering)
      
       Returns:
           Dict with analysis results
       """
       try:
           if data.startswith('{') or data.startswith('['):
               parsed_data = json.loads(data)
               df = pd.DataFrame(parsed_data)
           else:
               df = pd.read_csv(StringIO(data))
          
           if operation == "stats":
               numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
              
               result = {
                   'shape': df.shape,
                   'columns': df.columns.tolist(),
                   'dtypes': {col: str(dtype) for col, dtype in df.dtypes.items()},
                   'missing_values': df.isnull().sum().to_dict(),
                   'numeric_columns': numeric_columns
               }
              
               if len(numeric_columns) > 0:
                   result['summary_stats'] = df[numeric_columns].describe().to_dict()
                   if len(numeric_columns) > 1:
                       result['correlation_matrix'] = df[numeric_columns].corr().to_dict()
              
               return result
              
           elif operation == "clustering":
               from sklearn.cluster import KMeans
               from sklearn.preprocessing import StandardScaler
              
               numeric_df = df.select_dtypes(include=[np.number])
               if numeric_df.shape[1] < 2:
                   return {'error': 'Need at least 2 numeric columns for clustering'}
              
               scaler = StandardScaler()
               scaled_data = scaler.fit_transform(numeric_df.fillna(0))
              
               n_clusters = min(3, max(2, len(numeric_df) // 2))
               kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
               clusters = kmeans.fit_predict(scaled_data)
              
               return {
                   'n_clusters': n_clusters,
                   'cluster_centers': kmeans.cluster_centers_.tolist(),
                   'cluster_labels': clusters.tolist(),
                   'inertia': float(kmeans.inertia_),
                   'feature_names': numeric_df.columns.tolist()
               }
              
       except Exception as e:
           return {'error': f"Data analysis failed: {str(e)}"}
    
    
    @performance_monitor 
    def advanced_code_generator(task_description: str, language: str = "python") -> Dict[str, str]:
       """
       Advanced code generation with multiple language support and optimization.
      
       Args:
           task_description: Description of coding task
           language: Target programming language
      
       Returns:
           Dict with generated code and metadata
       """
       templates = {
           'python': {
               'api_client': '''
    import requests
    import json
    import time
    from typing import Dict, Any, Optional
    
    
    class APIClient:
       """Production-ready API client with retry logic and error handling"""
      
       def __init__(self, base_url: str, api_key: Optional[str] = None, timeout: int = 30):
           self.base_url = base_url.rstrip('/')
           self.timeout = timeout
           self.session = requests.Session()
          
           if api_key:
               self.session.headers.update({'Authorization': f'Bearer {api_key}'})
          
           self.session.headers.update({
               'Content-Type': 'application/json',
               'User-Agent': 'CustomAPIClient/1.0'
           })
      
       def _make_request(self, method: str, endpoint: str, **kwargs) -> Dict[str, Any]:
           """Make HTTP request with retry logic"""
           url = f'{self.base_url}/{endpoint.lstrip("/")}'
          
           for attempt in range(3):
               try:
                   response = self.session.request(method, url, timeout=self.timeout, **kwargs)
                   response.raise_for_status()
                   return response.json() if response.content else {}
               except requests.exceptions.RequestException as e:
                   if attempt == 2:  # Last attempt
                       raise
                   time.sleep(2 ** attempt)  # Exponential backoff
      
       def get(self, endpoint: str, params: Optional[Dict] = None) -> Dict[str, Any]:
           return self._make_request('GET', endpoint, params=params)
      
       def post(self, endpoint: str, data: Optional[Dict] = None) -> Dict[str, Any]:
           return self._make_request('POST', endpoint, json=data)
      
       def put(self, endpoint: str, data: Optional[Dict] = None) -> Dict[str, Any]:
           return self._make_request('PUT', endpoint, json=data)
      
       def delete(self, endpoint: str) -> Dict[str, Any]:
           return self._make_request('DELETE', endpoint)
    ''',
               'data_processor': '''
    import pandas as pd
    import numpy as np
    from typing import List, Dict, Any, Optional
    import logging
    
    
    logger = logging.getLogger(__name__)
    
    
    class DataProcessor:
       """Advanced data processor with comprehensive cleaning and analysis"""
      
       def __init__(self, data: pd.DataFrame):
           self.original_data = data.copy()
           self.processed_data = data.copy()
           self.processing_log = []
      
       def clean_data(self, strategy: str = 'auto') -> 'DataProcessor':
           """Clean data with configurable strategies"""
           initial_shape = self.processed_data.shape
          
           # Remove duplicates
           self.processed_data = self.processed_data.drop_duplicates()
          
           # Handle missing values based on strategy
           if strategy == 'auto':
               # For numeric columns, use mean
               numeric_cols = self.processed_data.select_dtypes(include=[np.number]).columns
               self.processed_data[numeric_cols] = self.processed_data[numeric_cols].fillna(
                   self.processed_data[numeric_cols].mean()
               )
              
               # For categorical columns, use mode
               categorical_cols = self.processed_data.select_dtypes(include=['object']).columns
               for col in categorical_cols:
                   mode_value = self.processed_data[col].mode()
                   if len(mode_value) > 0:
                       self.processed_data[col] = self.processed_data[col].fillna(mode_value[0])
          
           final_shape = self.processed_data.shape
           self.processing_log.append(f"Cleaned data: {initial_shape} -> {final_shape}")
           return self
      
       def normalize(self, method: str = 'minmax', columns: Optional[List[str]] = None) -> 'DataProcessor':
           """Normalize numerical columns"""
           cols = columns or self.processed_data.select_dtypes(include=[np.number]).columns.tolist()
          
           if method == 'minmax':
               # Min-max normalization
               for col in cols:
                   col_min, col_max = self.processed_data[col].min(), self.processed_data[col].max()
                   if col_max != col_min:
                       self.processed_data[col] = (self.processed_data[col] - col_min) / (col_max - col_min)
           elif method == 'zscore':
               # Z-score normalization
               for col in cols:
                   mean_val, std_val = self.processed_data[col].mean(), self.processed_data[col].std()
                   if std_val != 0:
                       self.processed_data[col] = (self.processed_data[col] - mean_val) / std_val
          
           self.processing_log.append(f"Normalized columns {cols} using {method}")
           return self
      
       def get_insights(self) -> Dict[str, Any]:
           """Generate comprehensive data insights"""
           insights = {
               'basic_info': {
                   'shape': self.processed_data.shape,
                   'columns': self.processed_data.columns.tolist(),
                   'dtypes': {col: str(dtype) for col, dtype in self.processed_data.dtypes.items()}
               },
               'data_quality': {
                   'missing_values': self.processed_data.isnull().sum().to_dict(),
                   'duplicate_rows': self.processed_data.duplicated().sum(),
                   'memory_usage': self.processed_data.memory_usage(deep=True).to_dict()
               },
               'processing_log': self.processing_log
           }
          
           # Add statistical summary for numeric columns
           numeric_data = self.processed_data.select_dtypes(include=[np.number])
           if len(numeric_data.columns) > 0:
               insights['statistical_summary'] = numeric_data.describe().to_dict()
          
           return insights
    '''
           }
       }
      
       task_lower = task_description.lower()
       if any(keyword in task_lower for keyword in ['api', 'client', 'http', 'request']):
           code = templates[language]['api_client']
           description = "Production-ready API client with retry logic and comprehensive error handling"
       elif any(keyword in task_lower for keyword in ['data', 'process', 'clean', 'analyze']):
           code = templates[language]['data_processor']
           description = "Advanced data processor with cleaning, normalization, and insight generation"
       else:
           code = f'''# Generated code template for: {task_description}
    # Language: {language}
    
    
    class CustomSolution:
       """Auto-generated solution template"""
      
       def __init__(self):
           self.initialized = True
      
       def execute(self, *args, **kwargs):
           """Main execution method - implement your logic here"""
           return {{"message": "Implement your custom logic here", "task": "{task_description}"}}
    
    
    # Usage example:
    # solution = CustomSolution()
    # result = solution.execute()
    '''
           description = f"Custom template for {task_description}"
      
       return {
           'code': code,
           'language': language,
           'description': description,
           'complexity': 'production-ready',
           'estimated_lines': len(code.split('n')),
           'features': ['error_handling', 'logging', 'type_hints', 'documentation']
       }

    We wrap each core function in a @performance_monitor decorator so we can log execution times and catch failures, then implement three specialized tools: advanced_web_intelligence for comprehensive or sentiment-driven web scraping, advanced_data_science_toolkit for statistical analysis and clustering on CSV or JSON data, and advanced_code_generator for producing production-ready code templates, ensuring we monitor performance and maintain consistency across all our analytics and code-generation utilities.

    Copy CodeCopiedUse a different Browser
    print("🤖 Setting up Custom Agent Framework")
    
    
    class AgentOrchestrator:
       """Manages multiple specialized agents with workflow coordination"""
      
       def __init__(self):
           self.agents = {}
           self.workflows = {}
           self.results_cache = {}
           self.performance_metrics = {}
          
       def create_specialist_agent(self, name: str, tools: List[CustomTool], system_prompt: str = None):
           """Create domain-specific agents"""
           agent = CustomAgent(
               name=name,
               system_prompt=system_prompt or f"You are a specialist {name} agent.",
               max_iterations=5
           )
          
           for tool in tools:
               agent.add_tool(tool)
          
           self.agents[name] = agent
           return agent
      
       def execute_workflow(self, workflow_name: str, inputs: Dict) -> Dict:
           """Execute multi-step workflows across agents"""
           if workflow_name not in self.workflows:
               raise ValueError(f"Workflow {workflow_name} not found")
          
           workflow = self.workflows[workflow_name]
           results = {}
           workflow_start = time.time()
          
           for step in workflow['steps']:
               agent_name = step['agent']
               task = step['task'].format(**inputs, **results)
              
               if agent_name in self.agents:
                   step_start = time.time()
                   result = self.agents[agent_name].run(task)
                   step_time = time.time() - step_start
                  
                   results[step['output_key']] = result
                   results[f"{step['output_key']}_time"] = step_time
          
           total_time = time.time() - workflow_start
          
           return {
               'workflow': workflow_name,
               'inputs': inputs,
               'results': results,
               'metadata': {
                   'total_execution_time': total_time,
                   'steps_completed': len(workflow['steps']),
                   'success': True
               }
           }
      
       def get_system_status(self) -> Dict[str, Any]:
           """Get comprehensive system status"""
           return {
               'agents': {name: {'tools': len(agent.tools)} for name, agent in self.agents.items()},
               'workflows': list(self.workflows.keys()),
               'cache_size': len(self.results_cache),
               'total_tools': sum(len(agent.tools) for agent in self.agents.values())
           }
    
    
    orchestrator = AgentOrchestrator()
    
    
    web_tool = CustomTool(
       name="advanced_web_intelligence",
       description="Advanced web analysis and intelligence gathering",
       func=advanced_web_intelligence
    )
    
    
    data_tool = CustomTool(
       name="advanced_data_science_toolkit",
       description="Comprehensive data science and statistical analysis",
       func=advanced_data_science_toolkit
    )
    
    
    code_tool = CustomTool(
       name="advanced_code_generator",
       description="Advanced code generation and architecture",
       func=advanced_code_generator
    )
    
    
    web_agent = orchestrator.create_specialist_agent(
       "web_analyst",
       [web_tool],
       "You are a web analysis specialist. Provide comprehensive website analysis and insights."
    )
    
    
    data_agent = orchestrator.create_specialist_agent(
       "data_scientist",
       [data_tool],
       "You are a data science expert. Perform statistical analysis and machine learning tasks."
    )
    
    
    code_agent = orchestrator.create_specialist_agent(
       "code_architect",
       [code_tool],
       "You are a senior software architect. Generate optimized, production-ready code."
    )
    

    We initialize an AgentOrchestrator to manage our suite of AI agents, register each CustomTool implementation for web intelligence, data science, and code generation, and then spin up three domain-specific agents: web_analyst, data_scientist, and code_architect. Each agent is seeded with its respective toolset and a clear system prompt. This setup enables us to coordinate and execute multi-step workflows across specialized expertise areas within a single, unified framework.

    Copy CodeCopiedUse a different Browser
    print("⚡ Defining Advanced Workflows")
    
    
    orchestrator.workflows['competitive_analysis'] = {
       'steps': [
           {
               'agent': 'web_analyst',
               'task': 'Analyze website {target_url} with comprehensive analysis',
               'output_key': 'website_analysis'
           },
           {
               'agent': 'code_architect',
               'task': 'Generate monitoring code for website analysis automation',
               'output_key': 'monitoring_code'
           }
       ]
    }
    
    
    orchestrator.workflows['data_pipeline'] = {
       'steps': [
           {
               'agent': 'data_scientist',
               'task': 'Analyze the following CSV data with stats operation: {data_input}',
               'output_key': 'data_analysis'
           },
           {
               'agent': 'code_architect',
               'task': 'Generate data processing pipeline code',
               'output_key': 'pipeline_code'
           }
       ]
    }
    

    We define two key multi-agent workflows: competitive_analysis, which involves our web analyst scraping and analyzing a target URL before passing insights to our code architect to generate monitoring scripts, and data_pipeline, where our data scientist runs statistical analyses on CSV inputs. Then our code architect crafts the corresponding ETL pipeline code. These declarative step sequences let us orchestrate complex tasks end-to-end with minimal boilerplate.

    Copy CodeCopiedUse a different Browser
    print("🚀 Running Production Examples")
    
    
    print("n📊 Advanced Web Intelligence Demo")
    try:
       web_result = web_agent.run("Analyze https://httpbin.org/html with comprehensive analysis type")
       print(f"✅ Web Analysis Success: {json.dumps(web_result, indent=2)}")
    except Exception as e:
       print(f"❌ Web analysis error: {e}")
    
    
    print("n🔬 Data Science Pipeline Demo")
    sample_data = """name,age,salary,department
    Alice,25,50000,Engineering
    Bob,30,60000,Engineering 
    Carol,35,70000,Marketing
    David,28,55000,Engineering
    Eve,32,65000,Marketing"""
    
    
    try:
       data_result = data_agent.run(f"Analyze this data with stats operation: {sample_data}")
       print(f"✅ Data Analysis Success: {json.dumps(data_result, indent=2)}")
    except Exception as e:
       print(f"❌ Data analysis error: {e}")
    
    
    print("n💻 Code Architecture Demo")
    try:
       code_result = code_agent.run("Generate an API client for data processing tasks")
       print(f"✅ Code Generation Success: Generated {len(code_result['results'][0]['code'].split())} lines of code")
    except Exception as e:
       print(f"❌ Code generation error: {e}")
    
    
    print("n🔄 Multi-Agent Workflow Demo")
    try:
       workflow_inputs = {'target_url': 'https://httpbin.org/html'}
       workflow_result = orchestrator.execute_workflow('competitive_analysis', workflow_inputs)
       print(f"✅ Workflow Success: Completed in {workflow_result['metadata']['total_execution_time']:.2f}s")
    except Exception as e:
       print(f"❌ Workflow error: {e}")
    

    We run a suite of production demos to validate each component: first, our web_analyst performs a full-site analysis; next, our data_scientist crunches sample CSV stats; then our code_architect generates an API client; and finally we orchestrate the end-to-end competitive analysis workflow, capturing success indicators, outputs, and execution timing for each step.

    Copy CodeCopiedUse a different Browser
    print("n📈 System Performance Metrics")
    
    
    system_status = orchestrator.get_system_status()
    print(f"System Status: {json.dumps(system_status, indent=2)}")
    
    
    print("nTool Performance:")
    for agent_name, agent in orchestrator.agents.items():
       print(f"n{agent_name}:")
       for tool_name, tool in agent.tools.items():
           print(f"  - {tool_name}: {tool.calls} calls, {tool.avg_execution_time:.3f}s avg, {tool.error_rate:.1%} error rate")
    
    
    print("n✅ Advanced Custom Agent Framework Complete!")
    print("🚀 Production-ready implementation with full monitoring and error handling!")
    

    We finish by retrieving and printing our orchestrator’s overall system status, listing registered agents, workflows, and cache size, then loop through each agent’s tools to display call counts, average execution times, and error rates. This gives us a real-time view of performance and reliability before we log a final confirmation that our production-ready agent framework is complete.

    In conclusion, we now have a blueprint for creating specialized AI agents that perform complex analyses and generate production-quality code, and also self-monitor their execution health and resource usage. The AgentOrchestrator ties everything together, enabling you to coordinate multi-step workflows and capture granular performance insights across agents. Whether you’re automating market research, ETL tasks, or API client generation, this framework provides the extensibility, reliability, and observability required for enterprise-grade AI deployments.


    Check out the Codes. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

    The post Building Production-Ready Custom AI Agents for Enterprise Workflows with Monitoring, Orchestration, and Scalability appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMastering Your Smartphone: 10 Features You Didn’t Know Existed
    Next Article EmbodiedGen: A Scalable 3D World Generator for Realistic Embodied AI Simulations

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 22, 2025
    Machine Learning

    EmbodiedGen: A Scalable 3D World Generator for Realistic Embodied AI Simulations

    June 22, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-4430 – EZD RP File Manipulation Remote Code Execution

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-49858 – Arconix Shortcodes Cross-site Scripting (XSS)

    Common Vulnerabilities and Exposures (CVEs)

    Reddit’s new Google-powered AI search tool makes finding answers faster than ever

    News & Updates

    GitHub Issues search now supports nested queries and boolean operators: Here’s how we (re)built it

    News & Updates

    Highlights

    Artificial Intelligence

    Robotic helper making mistakes? Just nudge it in the right direction

    June 10, 2025

    Imagine that a robot is helping you clean the dishes. You ask it to grab…

    CVE-2025-3486 – Allegra ZipEntry Valide Directory Traversal Remote Code Execution Vulnerability

    May 22, 2025

    Hackers Use Fake VPN and Browser NSIS Installers to Deliver Winos 4.0 Malware

    May 25, 2025

    CVE-2025-45514 – Tenda FH451 Stack Overflow Vulnerability

    May 7, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.