Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      How To Prevent WordPress SQL Injection Attacks

      June 12, 2025

      Java never goes out of style: Celebrating 30 years of the language

      June 12, 2025

      OpenAI o3-pro available in the API, BrowserStack adds Playwright support for real iOS devices, and more – Daily News Digest

      June 12, 2025

      Creating The “Moving Highlight” Navigation Bar With JavaScript And CSS

      June 11, 2025

      Surface Pro 11 with Snapdragon X Elite drops to lowest price ever

      June 12, 2025

      With WH40K Boltgun and Dungeons of Hinterberg, this month’s Humble Choice lineup is stacked for less than $12

      June 12, 2025

      I’ve been loving the upgrade to my favorite mobile controller, and there’s even a version for large tablets

      June 12, 2025

      Copilot Vision just launched — and Microsoft already added new features

      June 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Master Data Management: The Key to Improved Analytics Reporting

      June 12, 2025
      Recent

      Master Data Management: The Key to Improved Analytics Reporting

      June 12, 2025

      Salesforce Lead-to-Revenue Management

      June 12, 2025

      React Native 0.80 – React 19.1, JS API Changes, Freezing Legacy Arch and much more

      June 12, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Surface Pro 11 with Snapdragon X Elite drops to lowest price ever

      June 12, 2025
      Recent

      Surface Pro 11 with Snapdragon X Elite drops to lowest price ever

      June 12, 2025

      With WH40K Boltgun and Dungeons of Hinterberg, this month’s Humble Choice lineup is stacked for less than $12

      June 12, 2025

      I’ve been loving the upgrade to my favorite mobile controller, and there’s even a version for large tablets

      June 12, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»How Much Do Language Models Really Memorize? Meta’s New Framework Defines Model Capacity at the Bit Level

    How Much Do Language Models Really Memorize? Meta’s New Framework Defines Model Capacity at the Bit Level

    June 11, 2025

    Introduction: The Challenge of Memorization in Language Models

    Modern language models face increasing scrutiny regarding their memorization behavior. With models such as an 8-billion parameter transformer trained on 15 trillion tokens, researchers question whether these models memorize their training data in a meaningful way. Common techniques, including data extraction and membership inference, fall short as they often fail to distinguish between memorization and generalization.

    Limitations of Existing Approaches

    Previous frameworks like extraction-based methods or differential privacy operate at the dataset level, not accounting for instance-specific memorization. Language modeling through compression and assessments of capacity through fact memorization (as in RNNs and quantized transformers) offer partial insight but lack scalability and precision, especially for deep transformer architectures.

    A Novel Approach to Measuring Memorization

    Researchers from FAIR at Meta, Google DeepMind, Cornell University, and NVIDIA have proposed a novel method for estimating how much a model “knows” about specific datapoints to measure the capacity of modern language models. They separate memorization into two components: unintended memorization, which represents the information a model contains about a dataset, and generalization, which captures the information about the true data-generation process. They calculate total memorization to provide accurate estimates of model capacity by removing generalization, showing that GPT family models have an approximate capacity of 3.6 bits-per-parameter. Researchers also developed a series of scaling laws that relate model capacity and data size to membership inference by training hundreds of transformer language models.

    Experimental Framework and Training Methodology

    Using the GPT-2 architecture, the team trained hundreds of models ranging from 100K to 20M parameters, varying depths (1-8 layers), and hidden sizes (32-512). Training involved:

    • 10^6 steps
    • Batch size: 2048
    • Precision: bfloat16
    • Hardware: Single A100 GPU

    These models were trained on both synthetic sequences and deduplicated 64-token text sequences from the FineWeb dataset. The experiments ensured minimal interference from generalization through careful dataset construction.

    Model Capacity Insights and Key Findings

    • Bits per parameter: Across configurations, models consistently stored between 3.5 and 3.6 bits/parameter.
    • Double descent: As training dataset size approaches model capacity, test loss initially decreases (overfitting), then improves again as models begin generalizing.
    • Precision impact: Training in float32 increases storage capacity slightly (to ~3.83 bpp) compared to bfloat16 (~3.51 bpp).

    Disentangling Memorization and Generalization

    Switching from synthetic to real-text datasets, the team observed:

    • Sample-level unintended memorization increases with parameter count.
    • Memorization decreases as training set size increases.
    • Accurate estimation of model memorization requires deduplication and reference to an oracle model for baseline compression rates.

    Membership Inference Scaling Laws

    The researchers modeled the success rate (F1 score) of loss-based membership inference as a function of the ratio between model capacity and dataset size. Key observations:

    • Membership inference becomes unreliable as datasets grow.
    • Predictive scaling laws remain accurate within 1-2% for models up to 1.5B parameters.

    Conclusion: A Better Understanding of Model Behavior

    This work establishes a principled framework for measuring memorization in language models. By introducing quantifiable metrics and scalable experiments, it deepens our understanding of how transformer models encode training data and draws a clear boundary between memorization and generalization. The resulting insights can guide future developments in model evaluation, privacy, and interpretability.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 99k+ ML SubReddit and Subscribe to our Newsletter.

    ▶ Want to promote your product/webinar/service to 1 Million+ AI Engineers/Developers/Data Scientists/Architects/CTOs/CIOs? Lets Partner..

    The post How Much Do Language Models Really Memorize? Meta’s New Framework Defines Model Capacity at the Bit Level appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleNVIDIA Researchers Introduce Dynamic Memory Sparsification (DMS) for 8× KV Cache Compression in Transformer LLMs
    Next Article Supercharging Workflows with AI Agent and Copilot Development🚀

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 12, 2025
    Machine Learning

    How VideoAmp uses Amazon Bedrock to power their media analytics interface

    June 12, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Rilasciata Tails 6.15: Novità e Aggiornamenti della Distribuzione GNU/Linux per la Privacy

    Linux

    Microsoft says Copilot can you help you land a job

    Operating Systems

    ZealousWeb LLC

    Web Development

    How to Verify Any (Reasonable) Distribution Property: Computationally Sound Argument Systems for Distributions

    Machine Learning

    Highlights

    CVE-2025-1419 – Konsola Proget Stored Cross-Site Scripting Vulnerability

    May 21, 2025

    CVE ID : CVE-2025-1419

    Published : May 21, 2025, 1:16 p.m. | 1 hour, 34 minutes ago

    Description : Input provided in comment section of Konsola Proget is not sanitized correctly, allowing a high-privileged user to perform a Stored Cross-Site Scripting attack.

    This issue has been fixed in 2.17.5 version of Konsola Proget (server part of the MDM suite).

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Hackers exploited Windows WebDav zero-day to drop malware

    June 11, 2025

    How Agile Helps You Improve Your Agility

    May 12, 2025

    How to create issues and pull requests in record time on GitHub

    June 5, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.