Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Designing For TV: Principles, Patterns And Practical Guidance (Part 2)

      September 5, 2025

      Neo4j introduces new graph architecture that allows operational and analytics workloads to be run together

      September 5, 2025

      Beyond the benchmarks: Understanding the coding personalities of different LLMs

      September 5, 2025

      Top 10 Use Cases of Vibe Coding in Large-Scale Node.js Applications

      September 3, 2025

      Building smarter interactions with MCP elicitation: From clunky tool calls to seamless user experiences

      September 4, 2025

      From Zero to MCP: Simplifying AI Integrations with xmcp

      September 4, 2025

      Distribution Release: Linux Mint 22.2

      September 4, 2025

      Coded Smorgasbord: Basically, a Smorgasbord

      September 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Drupal 11’s AI Features: What They Actually Mean for Your Team

      September 5, 2025
      Recent

      Drupal 11’s AI Features: What They Actually Mean for Your Team

      September 5, 2025

      Why Data Governance Matters More Than Ever in 2025?

      September 5, 2025

      Perficient Included in the IDC Market Glance for Digital Business Professional Services, 3Q25

      September 5, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      How DevOps Teams Are Redefining Reliability with NixOS and OSTree-Powered Linux

      September 5, 2025
      Recent

      How DevOps Teams Are Redefining Reliability with NixOS and OSTree-Powered Linux

      September 5, 2025

      Distribution Release: Linux Mint 22.2

      September 4, 2025

      ‘Cronos: The New Dawn’ was by far my favorite experience at Gamescom 2025 — Bloober might have cooked an Xbox / PC horror masterpiece

      September 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Salesforce AI Introduces CRMArena-Pro: The First Multi-Turn and Enterprise-Grade Benchmark for LLM Agents

    Salesforce AI Introduces CRMArena-Pro: The First Multi-Turn and Enterprise-Grade Benchmark for LLM Agents

    June 5, 2025

    AI agents powered by LLMs show great promise for handling complex business tasks, especially in areas like Customer Relationship Management (CRM). However, evaluating their real-world effectiveness is challenging due to the lack of publicly available, realistic business data. Existing benchmarks often focus on simple, one-turn interactions or narrow applications, such as customer service, missing out on broader domains, including sales, CPQ processes, and B2B operations. They also fail to test how well agents manage sensitive information. These limitations make it challenging to fully comprehend how LLM agents perform across the diverse range of real-world business scenarios and communication styles. 

    Previous benchmarks have largely focused on customer service tasks in B2C scenarios, overlooking key business operations, such as sales and CPQ processes, as well as the unique challenges of B2B interactions, including longer sales cycles. Moreover, many benchmarks lack realism, often ignoring multi-turn dialogue or skipping expert validation of tasks and environments. Another critical gap is the absence of confidentiality evaluation, vital in workplace settings where AI agents routinely engage with sensitive business and customer data. Without assessing data awareness, these benchmarks fail to address serious practical concerns, such as privacy, legal risk, and trust. 

    Researchers from Salesforce AI Research have introduced CRMArena-Pro, a benchmark designed to realistically evaluate LLM agents like Gemini 2.5 Pro in professional business environments. It features expert-validated tasks across customer service, sales, and CPQ, spanning both B2B and B2C contexts. The benchmark tests multi-turn conversations and assesses confidentiality awareness. Findings show that even top-performing models such as Gemini 2.5 Pro achieve only around 58% accuracy in single-turn tasks, with performance dropping to 35% in multi-turn settings. Workflow Execution is an exception, where Gemini 2.5 Pro exceeds 83%, but confidentiality handling remains a major challenge across all evaluated models. 

    CRMArena-Pro is a new benchmark created to rigorously test LLM agents in realistic business settings, including customer service, sales, and CPQ scenarios. Built using synthetic yet structurally accurate enterprise data generated with GPT-4 and based on Salesforce schemas, the benchmark simulates business environments through sandboxed Salesforce Organizations. It features 19 tasks grouped under four key skills: database querying, textual reasoning, workflow execution, and policy compliance. CRMArena-Pro also includes multi-turn conversations with simulated users and tests confidentiality awareness. Expert evaluations confirmed the realism of the data and environment, ensuring a reliable testbed for LLM agent performance. 

    The evaluation compared top LLM agents across 19 business tasks, focusing on task completion and awareness of confidentiality. Metrics varied by task type—exact match was used for structured outputs, and F1 score for generative responses. A GPT-4o-based LLM Judge assessed whether models appropriately refused to share sensitive information. Models like Gemini-2.5-Pro and o1, with advanced reasoning, clearly outperformed lighter or non-reasoning versions, especially in complex tasks. While performance was similar across B2B and B2C settings, nuanced trends emerged based on model strength. Confidentiality-aware prompts improved refusal rates but sometimes reduced task accuracy, highlighting a trade-off between privacy and performance. 

    In conclusion, CRMArena-Pro is a new benchmark designed to test how well LLM agents handle real-world business tasks in customer relationship management. It includes 19 expert-reviewed tasks across both B2B and B2C scenarios, covering sales, service, and pricing operations. While top agents performed decently in single-turn tasks (about 58% success), their performance dropped sharply to around 35% in multi-turn conversations. Workflow execution was the easiest area, but most other skills proved challenging. Confidentiality awareness was low, and improving it through prompting often reduced task accuracy. These findings reveal a clear gap between the capabilities of LLMs and the needs of enterprises. 


    Check out the Paper, GitHub Page, Hugging Face Page and Technical Blog. All credit for this research goes to the researchers of this project.

    🆕 Did you know? Marktechpost is the fastest-growing AI media platform—trusted by over 1 million monthly readers. Book a strategy call to discuss your campaign goals. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Salesforce AI Introduces CRMArena-Pro: The First Multi-Turn and Enterprise-Grade Benchmark for LLM Agents appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleFrom Clicking to Reasoning: WebChoreArena Benchmark Challenges Agents with Memory-Heavy and Multi-Page Tasks
    Next Article Modernize and migrate on-premises fraud detection machine learning workflows to Amazon SageMaker

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-20265 – “Cisco Secure Firewall Management Center RADIUS Command Injection Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    Apple just gave me 3 big reasons to keep my AirPods for longer – and be excited for iOS 26

    News & Updates

    Mistral AI Releases Magistral Series: Advanced Chain-of-Thought LLMs for Enterprise and Open-Source Applications

    Machine Learning

    Solution Highlight – Oracle Fusion and Salesforce – Part 3

    Development

    Highlights

    Machine Learning

    Shaping the future: OMRON’s data-driven journey with AWS

    April 3, 2025

    This post is co-written with Emrah Kaya and Xinyi Zhou from Omron Europe. Data is…

    CVE-2025-9260 – Fluent Forms PHP Object Injection and Remote Code Execution Vulnerability

    September 2, 2025

    CVE-2025-31100 – Mojoomla School Management Unrestricted File Upload Vulnerability

    August 31, 2025

    Stretch Break Linux App Reminds You to Stop Pixel-Gawping

    June 3, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.