Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 5, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 5, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 5, 2025

      CodeSOD: Integral to a Database Read

      June 5, 2025

      Players aren’t buying Call of Duty’s “error” excuse for the ads Activision started forcing into the game’s menus recently

      June 4, 2025

      In Sam Altman’s world, the perfect AI would be “a very tiny model with superhuman reasoning capabilities” for any context

      June 4, 2025

      Sam Altman’s ouster from OpenAI was so dramatic that it’s apparently becoming a movie — Will we finally get the full story?

      June 4, 2025

      One of Microsoft’s biggest hardware partners joins its “bold strategy, Cotton” moment over upgrading to Windows 11, suggesting everyone just buys a Copilot+ PC

      June 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Enable Flexible Pattern Matching with Laravel’s Case-Insensitive Str::is Method

      June 5, 2025
      Recent

      Enable Flexible Pattern Matching with Laravel’s Case-Insensitive Str::is Method

      June 5, 2025

      Laravel OpenRouter

      June 5, 2025

      This Week in Laravel: Starter Kits, Alpine, PDFs and Roles/Permissions

      June 5, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      FOSS Weekly #25.23: Helwan Linux, Quarkdown, Konsole Tweaks, Keyboard Shortcuts and More Linux Stuff

      June 5, 2025
      Recent

      FOSS Weekly #25.23: Helwan Linux, Quarkdown, Konsole Tweaks, Keyboard Shortcuts and More Linux Stuff

      June 5, 2025

      Grow is a declarative website generator

      June 5, 2025

      Raspberry Pi 5 Desktop Mini PC: Benchmarking

      June 5, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper from Microsoft Introduces WINA: A Training-Free Sparse Activation Framework for Efficient Large Language Model Inference

    This AI Paper from Microsoft Introduces WINA: A Training-Free Sparse Activation Framework for Efficient Large Language Model Inference

    May 31, 2025

    Large language models (LLMs), with billions of parameters, power many AI-driven services across industries. However, their massive size and complex architectures make their computational costs during inference a significant challenge. As these models evolve, optimizing the balance between computational efficiency and output quality has become a crucial area of research.

    The core challenge lies in how LLMs handle inference. Every time an input is processed, the entire model is activated, which consumes extensive computational resources. This full activation is unnecessary for most tasks, as only a small subset of neurons contribute meaningfully to the final output. Existing sparse activation methods attempt to address this by selectively deactivating less important neurons. However, these approaches often focus only on the magnitude of hidden states while ignoring the critical role of weight matrices in propagating errors through the network. This oversight leads to high approximation errors and deteriorates model performance, particularly at higher sparsity levels.

    Sparse activation techniques have included methods like Mixture-of-Experts (MoE) used in models such as GPT-4 and Mistral, which rely on additional training to learn which experts to activate for each input. Other approaches, such as TEAL and CATS, aim to reduce computation by using the size of hidden activations to prune neurons, but they still leave room for improvement. These methods often struggle with balancing sparsity and accuracy, as they can mistakenly deactivate important neurons or retain those with minimal influence. Moreover, they require model-specific threshold tuning, making them less flexible across different architectures.

    Researchers from Microsoft, Renmin University of China, New York University, and the South China University of Technology proposed a new method called WINA (Weight Informed Neuron Activation) to address these issues. WINA introduces a training-free sparse activation technique that uses both hidden state magnitudes and column-wise ℓ2 norms of weight matrices to determine which neurons to activate during inference. By considering the combined impact of input magnitudes and weight importance, WINA creates a more effective sparsification strategy that adapts to different layers of the model without requiring retraining or fine-tuning.

    The WINA method is built on a simple yet powerful idea: neurons that have strong activations and large weight magnitudes are more likely to influence downstream computations. To operationalize this, WINA calculates the element-wise product of hidden states and weight norms, selecting the top-K components based on this combined metric. This strategy allows WINA to construct a sparse sub-network that preserves the most important signals while ignoring redundant activations. The method also includes a tensor transformation step that enforces column-wise orthogonality in weight matrices, ensuring theoretical error bounds translate effectively to real-world performance. By combining these steps, WINA maintains a tight approximation error while delivering significant computational savings.

    The research team evaluated WINA on several large language models, including Qwen-2.5-7B, LLaMA-2-7B, LLaMA-3-8B, and Phi-4-14B, across various tasks and sparsity levels. WINA outperformed TEAL and CATS across all tested models and sparsity settings. For example, on Qwen-2.5-7B at 65% sparsity, WINA achieved up to 2.94% higher average performance than TEAL and 1.41% better than TEAL-Transform. On LLaMA-3-8B, WINA delivered gains of 1.06% at 50% sparsity and 2.41% at 65% sparsity. Even at high sparsity levels, WINA retained stronger performance on reasoning-intensive tasks like GSM8K and ARC Challenge. WINA also delivered consistent computational savings, reducing floating-point operations by up to 63.7% on LLaMA-2-7B and 62.7% on Phi-4-14B.

    In summary, WINA offers a robust, training-free solution for sparse activation in large language models by combining hidden state magnitudes with weight matrix norms. This approach addresses the limitations of prior methods, such as TEAL, resulting in lower approximation errors, improved accuracy, and significant computational savings. The research team’s work represents an important step forward in developing more efficient LLM inference methods that can adapt to diverse models without requiring additional training.


    Check out the Paper and GitHub Page . All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post This AI Paper from Microsoft Introduces WINA: A Training-Free Sparse Activation Framework for Efficient Large Language Model Inference appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMeet NovelSeek: A Unified Multi-Agent Framework for Autonomous Scientific Research from Hypothesis Generation to Experimental Validation
    Next Article Cisco’s Latest AI Agents Report Details the Transformative Impact of Agentic AI on Customer Experience

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 5, 2025
    Machine Learning

    H Company Releases Runner H Public Beta Alongside Holo-1 and Tester H for Developers

    June 5, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Optimizing Large Data Delivery with Laravel Streaming Responses

    Development

    Google DeepMind at ICML 2024

    Artificial Intelligence

    Prompt. Generate. Deploy. The New Product Design Workflow

    Web Development

    To code is to struggle! I interview Tech with Tim, who got a job at Microsoft at age 19 [Podcast #150]

    Development

    Highlights

    Development

    Understanding Variables, Data Types, and Constants in VBA

    January 9, 2025

    In Visual Basic for Applications (VBA), variables, data types, and constants are fundamental building blocks…

    Windows 10 Settings can show alerts when Microsoft 365 subscription expires

    January 2, 2025

    CVE-2025-4529 – Seeyon Zhiyuan OA Web Application System Path Traversal Vulnerability

    May 11, 2025

    Dropout: A Revolutionary Approach to Reducing Overfitting in Neural Networks

    July 5, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.