Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Why Non-Native Content Designers Improve Global UX

      July 18, 2025

      DevOps won’t scale without platform engineering and here’s why your teams are still stuck

      July 18, 2025

      This week in AI dev tools: Slack’s enterprise search, Claude Code’s analytics dashboard, and more (July 18, 2025)

      July 18, 2025

      Report: 71% of tech leaders won’t hire devs without AI skills

      July 17, 2025

      Could OpenAI’s rumored browser be a Chrome-killer? Here’s what I’m expecting

      July 18, 2025

      My favorite lens and screen-cleaning kit keeps my tech spotless, and it only costs $8

      July 18, 2025

      AI’s biggest impact on your workforce is still to come – 3 ways to avoid getting left behind

      July 18, 2025

      Remedy offers update on ‘FBC: Firebreak,’ details coming improvements — “We’ve seen many players come into the game and leave within the first hour.”

      July 18, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The details of TC39’s last meeting

      July 18, 2025
      Recent

      The details of TC39’s last meeting

      July 18, 2025

      Online Examination System using PHP and MySQL

      July 18, 2025

      A tricky, educational quiz: it’s about time..

      July 18, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      CAD Sketcher – constraint-based geometry sketcher

      July 18, 2025
      Recent

      CAD Sketcher – constraint-based geometry sketcher

      July 18, 2025

      7 Best Free and Open Source Linux FTP Servers

      July 18, 2025

      Best Free and Open Source Alternatives to Autodesk FBX Review

      July 18, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Apple and Duke Researchers Present a Reinforcement Learning Approach That Enables LLMs to Provide Intermediate Answers, Enhancing Speed and Accuracy

    Apple and Duke Researchers Present a Reinforcement Learning Approach That Enables LLMs to Provide Intermediate Answers, Enhancing Speed and Accuracy

    May 30, 2025

    Long CoT reasoning improves large language models’ performance on complex tasks but comes with drawbacks. The typical “think-then-answer” method slows down response times, disrupting real-time interactions like those in chatbots. It also risks inaccuracies, as errors in earlier reasoning steps can lead to a misleading final answer. Unlike humans, who often share partial thoughts or conclusions during conversations, LLMs delay responses until all reasoning is complete. While RL is commonly used to train reasoning models, it mainly rewards final answers, overlooking useful intermediate insights. There is growing interest in teaching models that alternate between thinking and answering, but this remains a challenge. 

    RL has become a popular method to enhance reasoning in LLMs, building on its success in aligning models with human preferences. Two common reward types guide RL: outcome-based rewards (ORM), which focus on the final answer, and process-based rewards (PRM), which provide feedback on intermediate reasoning steps. While PRMs offer more detailed supervision, they often rely on human annotation and additional models, making them complex and prone to issues like reward hacking. Separately, efforts to improve LLM reasoning have explored prompting strategies, structured reasoning, tool integration, and methods to reduce latency and improve efficiency. 

    Researchers from Apple and Duke University introduce Interleaved Reasoning, a new RL approach that enables language models to alternate between thinking and answering when solving complex, multi-step questions. Instead of waiting until the end to respond, models provide informative intermediate answers, which improves feedback for users and guides their reasoning. Using a straightforward rule-based reward, the model is trained to produce helpful reasoning steps, leading to over 80% faster responses and up to 19.3% better accuracy. Trained only on QA and logic datasets, the method demonstrates strong generalization to more challenging benchmarks, such as MATH, GPQA, and MMLU. 

    The study proposes a reinforcement learning framework to train LLMs for Interleaved Reasoning, where models alternate between internal thinking and user-facing intermediate answers. Each intermediate step, or “sub-answer,” is shared once the model reaches a meaningful milestone in reasoning. A specialized training template with <think> and <answer> tags is used. The approach utilizes rule-based rewards—specifically, format, final accuracy, and conditional intermediate accuracy—to guide learning. Notably, intermediate rewards are applied only when specific criteria are met, ensuring the model prioritizes overall correctness. They also test different reward schemes, such as all-or-none, partial credit, and time-discounted rewards, to optimize the quality of reasoning. 

    The interleaved reasoning approach was evaluated on both familiar and unfamiliar datasets using Qwen2.5 models (1.5B and 7B). Unlike traditional methods that separate thinking and answering, the interleaved method provides answers incrementally, improving both speed and usefulness. When combined with intermediate rewards, it significantly enhances model performance while reducing response delays by over 80%. Even without exposure to new domains during training, the model adapts well, showing strong generalization. These results highlight the value of interleaved reasoning in making AI systems more responsive and effective in real-world, multi-step reasoning tasks. 

    In conclusion, the study explores how interleaved reasoning—where models alternate between reasoning and generating intermediate answers—can significantly improve performance and responsiveness. Using the Qwen2.5-1.5B model, the authors show that providing timely intermediate feedback during training boosts accuracy and accelerates response generation. Different RL strategies were tested, with PPO showing stable results, and conditional, time-discounted rewards proving to be the most effective. The method scales well to complex tasks and outperforms traditional think-then-answer baselines. Unlike token-level reward models, this approach employs simple rule-based rewards after completing full reasoning steps, thereby avoiding reward hacking. Ultimately, interleaved reasoning enhances reasoning quality and efficiency without relying on external tools. 


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Apple and Duke Researchers Present a Reinforcement Learning Approach That Enables LLMs to Provide Intermediate Answers, Enhancing Speed and Accuracy appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleTrump Administration’s Pro-Crypto Stance: A Paradigm Shift in Financial Innovation
    Next Article DeepSeek Releases R1-0528: An Open-Source Reasoning AI Model Delivering Enhanced Math and Code Performance with Single-GPU Efficiency

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 18, 2025
    Machine Learning

    Language Models Improve When Pretraining Data Matches Target Tasks

    July 18, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-1729 – TrackPoint Quick Menu DLL Hijacking Privilege Escalation Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Rilasciato Thunderbird 140 ESR: Un’attenzione alle esigenze aziendali

    Linux

    CVE-2024-13307 – Reales WP Real Estate WordPress Theme Unauthenticated File Deletion and Authorization Bypass Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Meet Amazon Nova Act: An AI Agent that can Automate Web Tasks

    Machine Learning

    Highlights

    How to make sure Adobe Flash is up-to-date and enabling it on-demand

    April 9, 2025

    Learn how to update Adobe Flash Player, to help protect against malware attacks. Source: Read…

    Eufy’s new smart display gives Amazon and Google a run for their money – how it works

    June 18, 2025

    KDE Plasma 6.4.3 Fixes Bugs on Wayland, Lock Screen, and More

    July 16, 2025

    Microsoft wants you and your business to ditch Office

    April 2, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.