Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Why Non-Native Content Designers Improve Global UX

      July 18, 2025

      DevOps won’t scale without platform engineering and here’s why your teams are still stuck

      July 18, 2025

      This week in AI dev tools: Slack’s enterprise search, Claude Code’s analytics dashboard, and more (July 18, 2025)

      July 18, 2025

      Report: 71% of tech leaders won’t hire devs without AI skills

      July 17, 2025

      Could OpenAI’s rumored browser be a Chrome-killer? Here’s what I’m expecting

      July 18, 2025

      My favorite lens and screen-cleaning kit keeps my tech spotless, and it only costs $8

      July 18, 2025

      AI’s biggest impact on your workforce is still to come – 3 ways to avoid getting left behind

      July 18, 2025

      Remedy offers update on ‘FBC: Firebreak,’ details coming improvements — “We’ve seen many players come into the game and leave within the first hour.”

      July 18, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The details of TC39’s last meeting

      July 18, 2025
      Recent

      The details of TC39’s last meeting

      July 18, 2025

      Online Examination System using PHP and MySQL

      July 18, 2025

      A tricky, educational quiz: it’s about time..

      July 18, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      CAD Sketcher – constraint-based geometry sketcher

      July 18, 2025
      Recent

      CAD Sketcher – constraint-based geometry sketcher

      July 18, 2025

      7 Best Free and Open Source Linux FTP Servers

      July 18, 2025

      Best Free and Open Source Alternatives to Autodesk FBX Review

      July 18, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper Introduces WEB-SHEPHERD: A Process Reward Model for Web Agents with 40K Dataset and 10× Cost Efficiency

    This AI Paper Introduces WEB-SHEPHERD: A Process Reward Model for Web Agents with 40K Dataset and 10× Cost Efficiency

    May 29, 2025

    Web navigation focuses on teaching machines how to interact with websites to perform tasks such as searching for information, shopping, or booking services. Building a capable web navigation agent is a complex task because it requires understanding the structure of websites, interpreting user goals, and making a series of decisions across multiple steps. These tasks are further complicated by the need for agents to adapt in dynamic web environments, where content can change frequently and where multimodal information, such as text and images, must be understood together.

    A key problem in web navigation is the absence of reliable and detailed reward models that can guide agents in real-time. Existing methods primarily rely on multimodal large language models (MLLMs) like GPT-4o and GPT-4o-mini as evaluators, which are expensive, slow, and often inaccurate, especially when handling long sequences of actions in multi-step tasks. These models use prompting-based evaluation or binary success/failure feedback but fail to provide step-level guidance, often leading to errors such as repeated actions or missing critical steps like clicking specific buttons or filling form fields. This limitation reduces the practicality of deploying web agents in real-world scenarios, where efficiency, accuracy, and cost-effectiveness are crucial.

    The research team from Yonsei University and Carnegie Mellon University introduced WEB-SHEPHERD, a process reward model specifically designed for web navigation tasks. WEB-SHEPHERD is the first model to evaluate web navigation agents at the step level, using structured checklists to guide assessments. The researchers also developed the WEBPRM COLLECTION, a dataset of 40,000 step-level annotated web navigation tasks, and the WEBREWARDBENCH benchmark for evaluating PRMs. These resources were designed to enable WEB-SHEPHERD to provide detailed feedback by breaking down complex tasks into smaller, measurable subgoals.

    WEB-SHEPHERD works by generating a checklist for each task based on the user’s instruction, such as “Search for product” or “Click on product page,” and evaluates the agent’s progress against these subgoals. The model uses next-token prediction to generate feedback and assigns rewards based on checklist completion. This process enables WEB-SHEPHERD to assess the correctness of each step with fine-grained judgment. The model estimates the reward for each step by combining the probabilities of “Yes,” “No,” and “In Progress” tokens and averages these across the checklist. This detailed scoring system enables agents to receive targeted feedback on their progress, enhancing their ability to navigate complex websites.

    The researchers demonstrated that WEB-SHEPHERD significantly outperforms existing models. On the WEBREWARDBENCH benchmark, WEB-SHEPHERD achieved a Mean Reciprocal Rank (MRR) score of 87.6% and a trajectory accuracy of 55% in the text-only setting, compared to GPT-4o-mini’s 47.5% MRR and 0% trajectory accuracy without checklists. When tested in WebArena-lite using GPT-4o-mini as the policy model, WEB-SHEPHERD achieved a 34.55% success rate, which is 10.9 points higher than using GPT-4o-mini as the evaluator, while also being ten times more cost-efficient. In ablation studies, the researchers observed that WEB-SHEPHERD’s performance dropped significantly when checklists or feedback were removed, proving their importance for accurate reward assignments. They also showed that multimodal input, surprisingly, did not always improve performance and sometimes introduced noise.

    This research highlights the critical role of detailed process-level rewards in building reliable web agents. The team’s work addresses the core challenge of web navigation—evaluating complex, multi-step actions—and offers a solution that is both scalable and cost-effective. With WEB-SHEPHERD, agents can now receive accurate feedback during navigation, enabling them to make better decisions and complete tasks more effectively.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post This AI Paper Introduces WEB-SHEPHERD: A Process Reward Model for Web Agents with 40K Dataset and 10× Cost Efficiency appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleCVE-2025-48388 – FreeScout Format String Vulnerability
    Next Article National University of Singapore Researchers Introduce Dimple: A Discrete Diffusion Multimodal Language Model for Efficient and Controllable Text Generation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 18, 2025
    Machine Learning

    Language Models Improve When Pretraining Data Matches Target Tasks

    July 18, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Reddit Users Secretly Manipulated by AI in Shocking Psychological Experiment

    Artificial Intelligence

    Warhol Arts: A Digital Playground of Pop, Pixels, and Pure Motion

    News & Updates

    From electrical engineering student to CTO with Hitesh Choudhary [Podcast #175]

    Development

    CVE-2025-32402 – RT-Labs P-Net OOB Write Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    CVE-2024-51101 – PHPGURUKUL Restaurant Table Booking System SQL Injection

    May 23, 2025

    CVE ID : CVE-2024-51101

    Published : May 23, 2025, 3:15 p.m. | 25 minutes ago

    Description : PHPGURUKUL Restaurant Table Booking System using PHP and MySQL v1.0 was discovered to contain a SQL injection vulnerability via the searchdata parameter at /rtbs/check-status.php.

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    CVE-2025-48272 – WP Job Portal Missing Authorization Vulnerability

    May 19, 2025

    CZUR StarryHub Review: A Smart Projector for Modern Offices

    June 5, 2025

    Gemini breaks new ground: a faster model, longer context and AI agents

    May 13, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.