Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Microsoft donates DocumentDB to the Linux Foundation

      August 25, 2025

      A Week In The Life Of An AI-Augmented Designer

      August 22, 2025

      This week in AI updates: Gemini Code Assist Agent Mode, GitHub’s Agents panel, and more (August 22, 2025)

      August 22, 2025

      Microsoft adds Copilot-powered debugging features for .NET in Visual Studio

      August 21, 2025

      ChatGPT is reportedly scraping Google Search data to answer your questions – here’s how

      August 26, 2025

      The 10 best early Labor Day deals live now: Save on Apple, Samsung and more

      August 26, 2025

      5 rumored Apple iPhone Fold features that have me excited (and frustrated at the same time)

      August 26, 2025

      Forget plug-and-play AI: Here’s what successful AI projects do differently

      August 26, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Log Outgoing HTTP Requests with the Laravel Spy Package

      August 26, 2025
      Recent

      Log Outgoing HTTP Requests with the Laravel Spy Package

      August 26, 2025

      devdojo/auth

      August 26, 2025

      Rust Slices: Cutting Into References the Safe Way

      August 26, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Best AI Girlfriend Simulator [2025 Working Apps and Websites]

      August 25, 2025
      Recent

      Best AI Girlfriend Simulator [2025 Working Apps and Websites]

      August 25, 2025

      8 Best Paid and Free AI Sexting Chat Apps in 2025

      August 25, 2025

      Best AI Anime Art Generator: 7 Best to Use [Free & Premium]

      August 25, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper Introduces Group Think: A Token-Level Multi-Agent Reasoning Paradigm for Faster and Collaborative LLM Inference

    This AI Paper Introduces Group Think: A Token-Level Multi-Agent Reasoning Paradigm for Faster and Collaborative LLM Inference

    May 24, 2025

    A prominent area of exploration involves enabling large language models (LLMs) to function collaboratively. Multi-agent systems powered by LLMs are now being examined for their potential to coordinate challenging problems by splitting tasks and working simultaneously. This direction has gained attention due to its potential to increase efficiency and reduce latency in real-time applications.

    A common issue in collaborative LLM systems is agents’ sequential, turn-based communication. In such systems, each agent must wait for others to complete their reasoning steps before proceeding. This slows down processing, especially in situations demanding rapid responses. Moreover, agents often duplicate efforts or generate inconsistent outputs, as they cannot see the evolving thoughts of their peers during generation. This latency and redundancy reduce the practicality of deploying multi-agent LLMs, particularly when time and computation are constrained, such as edge devices.

    Most current solutions have relied on sequential or independently parallel sampling techniques to improve reasoning. Methods like Chain-of-Thought prompting help models to solve problems in a structured way but often come with increased inference time. Approaches such as Tree-of-Thoughts and Graph-of-Thoughts expand on this by branching reasoning paths. However, these approaches still do not allow for real-time mutual adaptation among agents. Multi-agent setups have explored collaborative methods, but mostly through alternating message exchanges, which again introduces delays. Some advanced systems propose complex dynamic scheduling or role-based configurations, which are not optimized for efficient inference.

    Research from MediaTek Research introduced a new method called Group Think. This approach enables multiple reasoning agents within a single LLM to operate concurrently, observing each other’s partial outputs at the token level. Each reasoning thread adapts to the evolving thoughts of the others mid-generation. This mechanism reduces duplication and enables agents to shift direction if another thread is better positioned to continue a specific line of reasoning. Group Think is implemented through a token-level attention mechanism that lets each agent attend to previously generated tokens from all agents, supporting real-time collaboration.

    The method works by assigning each agent its own sequence of token indices, allowing their outputs to be interleaved in memory. These interleaved tokens are stored in a shared cache accessible to all agents during generation. This design allows efficient attention across reasoning threads without architectural changes to the transformer model. The implementation works both on personal devices and in data centers. On local devices, it effectively uses idle compute by batching multiple agent outputs, even with a batch size of one. In data centers, Group Think allows multiple requests to be processed together, interleaving tokens across agents while maintaining correct attention dynamics.

    Performance tests demonstrate that Group Think significantly improves latency and output quality. In enumeration tasks, such as listing 100 distinct names, it achieved near-complete results more rapidly than conventional Chain-of-Thought approaches. The acceleration was proportional to the number of thinkers; for example, four thinkers reduced latency by a factor of about four. In divide-and-conquer problems, using the Floyd–Warshall algorithm on a graph of five nodes, four thinkers reduced the completion time to half that of a single agent. Group Think solved code generation challenges in programming tasks more effectively than baseline models. With four or more thinkers, the model produced correct code segments much faster than traditional reasoning models.

    This research shows that existing LLMs, though not explicitly trained for collaboration, can already demonstrate emergent group reasoning behaviors under the Group Think setup. In experiments, agents naturally diversified their work to avoid redundancy, often dividing tasks by topic or focus area. These findings suggest that Group Think’s efficiency and sophistication could be enhanced further with dedicated training on collaborative data.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post This AI Paper Introduces Group Think: A Token-Level Multi-Agent Reasoning Paradigm for Faster and Collaborative LLM Inference appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleIs it recommended to use JMETER for API testing? How can I do this when I pass multiple request payloads via csv to add assertions?
    Next Article CVE-2025-5126 – “FLIR AX8 Remote Command Injection Vulnerability”

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    August 26, 2025
    Machine Learning

    Checklists Are Better Than Reward Models For Aligning Language Models

    August 23, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Timeline Expectations: How Long Does It Really Take to Build an AI Solution?

    Web Development

    Accelerating scientific discovery with AI

    Artificial Intelligence

    CVE-2025-5231 – PHPGurukul Company Visitor Management System SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-7398 – Brocade ASCG Cryptographic Weakness

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Machine Learning

    Prompting for the best price-performance

    April 4, 2025

    In the drive to remain competitive, businesses today are turning to AI to help them…

    CVE-2025-7504 – WordPress Friends Plugin PHP Object Injection Vulnerability

    July 12, 2025

    Build an Intelligent Multi-Tool AI Agent Interface Using Streamlit for Seamless Real-Time Interaction

    June 20, 2025

    CVE-2025-4372 – Google Chrome WebAudio Use After Free Vulnerability

    May 6, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.