Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 24, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 24, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 24, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 24, 2025

      Looking for an AI-powered website builder? Here’s your best option in 2025

      May 24, 2025

      SteamOS is officially not just for Steam Deck anymore — now ready for Lenovo Legion Go S and sort of ready for the ROG Ally

      May 23, 2025

      Microsoft’s latest AI model can accurately forecast the weather: “It doesn’t know the laws of physics, so it could make up something completely crazy”

      May 23, 2025

      OpenAI scientists wanted “a doomsday bunker” before AGI surpasses human intelligence and threatens humanity

      May 23, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      A timeline of JavaScript’s history

      May 23, 2025
      Recent

      A timeline of JavaScript’s history

      May 23, 2025

      Loading JSON Data into Snowflake From Local Directory

      May 23, 2025

      Streamline Conditional Logic with Laravel’s Fluent Conditionable Trait

      May 23, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Open-Typer is a typing tutor application

      May 24, 2025
      Recent

      Open-Typer is a typing tutor application

      May 24, 2025

      RefreshOS is a distribution built on the robust foundation of Debian

      May 24, 2025

      Cosmicding is a client to manage your linkding bookmarks

      May 24, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Researchers from the National University of Singapore Introduce ‘Thinkless,’ an Adaptive Framework that Reduces Unnecessary Reasoning by up to 90% Using DeGRPO

    Researchers from the National University of Singapore Introduce ‘Thinkless,’ an Adaptive Framework that Reduces Unnecessary Reasoning by up to 90% Using DeGRPO

    May 23, 2025

    The effectiveness of language models relies on their ability to simulate human-like step-by-step deduction. However, these reasoning sequences are resource-intensive and can be wasteful for simple questions that do not require elaborate computation. This lack of awareness regarding the complexity of the task is one of the core challenges in these models. They often default to detailed reasoning even for queries that could be answered directly. Such an approach increases token usage, extends response time, and increases system latency and memory usage. As a result, there’s a pressing need to equip language models with a mechanism that allows them to make autonomous decisions about whether to think deeply or respond succinctly.

    Current tools attempting to solve this issue either rely on manually set heuristics or prompt engineering to switch between short and long responses. Some methods use separate models and route questions based on complexity estimates. Still, these external routing systems often lack insight into the target model’s strengths and fail to make optimal decisions. Other techniques fine-tune models with prompt-based cues like “reasoning on/off,” but these rely on static rules rather than dynamic understanding. Despite some improvements, these approaches fail to enable fully autonomous and context-sensitive control within a single model.

    Researchers from the National University of Singapore introduced a new framework called Thinkless, which equips a language model with the ability to dynamically decide between using short or long-form reasoning. The framework is built on reinforcement learning and introduces two special control tokens—<short> for concise answers and <think> for detailed responses. By incorporating a novel algorithm called Decoupled Group Relative Policy Optimization (DeGRPO), Thinkless separates the training focus between selecting the reasoning mode and improving the accuracy of the generated response. This design prevents the model from falling into one-dimensional behavior and enables adaptive reasoning tailored to each query.

    The methodology involves two stages: warm-up distillation and reinforcement learning. In the distillation phase, Thinkless is trained using outputs from two expert models—one specializing in short responses and the other in detailed reasoning. This stage helps the model establish a firm link between the control token and the desired reasoning format. The reinforcement learning stage then fine-tunes the model’s ability to decide which reasoning mode to use. DeGRPO decomposes the learning into two separate objectives: one for training the control token and another for refining the response tokens. This approach avoids the gradient imbalances in earlier models, where longer responses would overpower the learning signal, leading to a collapse in reasoning diversity. Thinkless ensures that both <short> and <think> tokens receive balanced updates, promoting stable learning across response types.

    When evaluated, Thinkless significantly reduced long-form reasoning while preserving high accuracy. On the Minerva Algebra benchmark, the model used the <think> token in only 25.88% of cases while achieving 94.59% accuracy. In contrast, conventional reasoning models had to use extended chains of thought much more frequently. On the AIME 2024 dataset, Thinkless reached a 27.33% accuracy rate with 100% usage of the reasoning mode, showing that it could maintain performance when full reasoning was necessary. On the GSM8K dataset, it utilized <think> only 13.31% of the time, yet still achieved 84.18% accuracy. These results reflect the model’s ability to handle simple and complex queries with appropriate reasoning depth, cutting down on unnecessary token generation by as much as 90% in some tasks.

    Overall, this study from the National University of Singapore researchers presents a compelling solution to the inefficiencies of uniform reasoning in large language models. By introducing a mechanism that enables models to judge task complexity and adjust their inference strategy accordingly, Thinkless optimizes both accuracy and efficiency. The method balances depth of reasoning and response precision without relying on fixed rules, offering a data-driven approach to more intelligent language model behavior.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.

    The post Researchers from the National University of Singapore Introduce ‘Thinkless,’ an Adaptive Framework that Reduces Unnecessary Reasoning by up to 90% Using DeGRPO appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleBetter CSS Shapes Using shape() — Part 1: Lines and Arcs
    Next Article CVE-2025-48241 – Verge3D Cross-site Scripting (XSS)

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    May 24, 2025
    Machine Learning

    Evaluating Enterprise-Grade AI Assistants: A Benchmark for Complex, Voice-Driven Workflows

    May 24, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Amazon Introduces Amazon Nova: A New Generation of SOTA Foundation Models that Deliver Frontier Intelligence and Industry Leading Price-Performance

    Development

    CVE-2025-4024 – iSourcecode Placement Management System SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    UX in Universal Design Series: Key Principles for Voice Control and Speech in Health Systems – 3

    Development

    This AI Paper Reveals the Inner Workings of Rotary Positional Embeddings in Transformers

    Development

    Highlights

    CVE-2024-13812 – “Anps Theme Plugin WordPress Shortcode Injection Vulnerability”

    April 26, 2025

    CVE ID : CVE-2024-13812

    Published : April 26, 2025, 9:15 a.m. | 2 hours, 49 minutes ago

    Description : The The Anps Theme plugin plugin for WordPress is vulnerable to arbitrary shortcode execution in all versions up to, and including, 1.1.1. This is due to the software allowing users to execute an action that does not properly validate a value before running do_shortcode. This makes it possible for unauthenticated attackers to execute arbitrary shortcodes.

    Severity: 6.5 | MEDIUM

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    FastSwitch: A Breakthrough in Handling Complex LLM Workloads with Enhanced Token Generation and Priority-Based Resource Management

    December 1, 2024

    Q&A: A roadmap for revolutionizing health care through data-driven innovation

    May 5, 2025

    High-Severity Flaw in PostgreSQL Allows Hackers to Exploit Environment Variables

    November 15, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.