In this tutorial, we provide a practical guide for implementing LangGraph, a streamlined, graph-based AI orchestration framework, integrated seamlessly with Anthropic’s Claude API. Through detailed, executable code optimized for Google Colab, developers learn how to build and visualize AI workflows as interconnected nodes performing distinct tasks, such as generating concise answers, critically analyzing responses, and automatically composing technical blog content. The compact implementation highlights LangGraph’s intuitive node-graph architecture. It can manage complex sequences of Claude-powered natural language tasks, from basic question-answering scenarios to advanced content generation pipelines.
from getpass import getpass
import os
anthropic_key = getpass("Enter your Anthropic API key: ")
os.environ["ANTHROPIC_API_KEY"] = anthropic_key
print("Key set:", "ANTHROPIC_API_KEY" in os.environ)
We securely prompt users to input their Anthropic API key using Python’s getpass module, ensuring sensitive data isn’t displayed. It then sets this key as an environment variable (ANTHROPIC_API_KEY) and confirms successful storage.
import os
import json
import requests
from typing import Dict, List, Any, Callable, Optional, Union
from dataclasses import dataclass, field
import networkx as nx
import matplotlib.pyplot as plt
from IPython.display import display, HTML, clear_output
We import essential libraries for building and visualizing structured AI workflows. It includes modules for handling data (json, requests, dataclasses), graph creation and visualization (networkx, matplotlib), interactive notebook display (IPython.display), and type annotations (typing) for clarity and maintainability.
try:
import anthropic
except ImportError:
print("Installing anthropic package...")
!pip install -q anthropic
import anthropic
from anthropic import Anthropic
We ensure the anthropic Python package is available for use. It attempts to import the module and, if not found, automatically installs it using pip in a Google Colab environment. After installation, it imports the Anthropic client, essential for interacting with Claude models via the Anthropic API. 4o
@dataclass
class NodeConfig:
name: str
function: Callable
inputs: List[str] = field(default_factory=list)
outputs: List[str] = field(default_factory=list)
config: Dict[str, Any] = field(default_factory=dict)
This NodeConfig data class defines the structure of each node in the LangGraph workflow. Each node has a name, an executable function, optional inputs and outputs, and an optional config dictionary to store additional parameters. This setup allows for modular, reusable node definitions for graph-based AI tasks.
class LangGraph:
def __init__(self, api_key: Optional[str] = None):
self.api_key = api_key or os.environ.get("ANTHROPIC_API_KEY")
if not self.api_key:
from google.colab import userdata
try:
self.api_key = userdata.get('ANTHROPIC_API_KEY')
if not self.api_key:
raise ValueError("No API key found")
except:
print("No Anthropic API key found in environment variables or Colab secrets.")
self.api_key = input("Please enter your Anthropic API key: ")
if not self.api_key:
raise ValueError("Please provide an Anthropic API key")
self.client = Anthropic(api_key=self.api_key)
self.graph = nx.DiGraph()
self.nodes = {}
self.state = {}
def add_node(self, node_config: NodeConfig):
self.nodes[node_config.name] = node_config
self.graph.add_node(node_config.name)
for input_node in node_config.inputs:
if input_node in self.nodes:
self.graph.add_edge(input_node, node_config.name)
return self
def claude_node(self, name: str, prompt_template: str, model: str = "claude-3-7-sonnet-20250219",
inputs: List[str] = None, outputs: List[str] = None, system_prompt: str = None):
"""Convenience method to create a Claude API node"""
inputs = inputs or []
outputs = outputs or [name + "_response"]
def claude_fn(state, **kwargs):
prompt = prompt_template
for k, v in state.items():
if isinstance(v, str):
prompt = prompt.replace(f"{{{k}}}", v)
message_params = {
"model": model,
"max_tokens": 1000,
"messages": [{"role": "user", "content": prompt}]
}
if system_prompt:
message_params["system"] = system_prompt
response = self.client.messages.create(**message_params)
return response.content[0].text
node_config = NodeConfig(
name=name,
function=claude_fn,
inputs=inputs,
outputs=outputs,
config={"model": model, "prompt_template": prompt_template}
)
return self.add_node(node_config)
def transform_node(self, name: str, transform_fn: Callable,
inputs: List[str] = None, outputs: List[str] = None):
"""Add a data transformation node"""
inputs = inputs or []
outputs = outputs or [name + "_output"]
node_config = NodeConfig(
name=name,
function=transform_fn,
inputs=inputs,
outputs=outputs
)
return self.add_node(node_config)
def visualize(self):
"""Visualize the graph"""
plt.figure(figsize=(10, 6))
pos = nx.spring_layout(self.graph)
nx.draw(self.graph, pos, with_labels=True, node_color="lightblue",
node_size=1500, arrowsize=20, font_size=10)
plt.title("LangGraph Flow")
plt.tight_layout()
plt.show()
print("nGraph Structure:")
for node in self.graph.nodes():
successors = list(self.graph.successors(node))
if successors:
print(f" {node} → {', '.join(successors)}")
else:
print(f" {node} (endpoint)")
print()
def _get_execution_order(self):
"""Determine execution order based on dependencies"""
try:
return list(nx.topological_sort(self.graph))
except nx.NetworkXUnfeasible:
raise ValueError("Graph contains a cycle")
def execute(self, initial_state: Dict[str, Any] = None):
"""Execute the graph in topological order"""
self.state = initial_state or {}
execution_order = self._get_execution_order()
print("Executing LangGraph flow:")
for node_name in execution_order:
print(f"- Running node: {node_name}")
node = self.nodes[node_name]
inputs = {k: self.state.get(k) for k in node.inputs if k in self.state}
result = node.function(self.state, **inputs)
if len(node.outputs) == 1:
self.state[node.outputs[0]] = result
elif isinstance(result, (list, tuple)) and len(result) == len(node.outputs):
for i, output_name in enumerate(node.outputs):
self.state[output_name] = result[i]
print("Execution completed!")
return self.state
def run_example(question="What are the key benefits of using a graph-based architecture for AI workflows?"):
"""Run an example LangGraph flow with a predefined question"""
print(f"Running example with question: '{question}'")
graph = LangGraph()
def question_provider(state, **kwargs):
return question
graph.transform_node(
name="question_provider",
transform_fn=question_provider,
outputs=["user_question"]
)
graph.claude_node(
name="question_answerer",
prompt_template="Answer this question clearly and concisely: {user_question}",
inputs=["user_question"],
outputs=["answer"],
system_prompt="You are a helpful AI assistant."
)
graph.claude_node(
name="answer_analyzer",
prompt_template="Analyze if this answer addresses the question well: Question: {user_question}nAnswer: {answer}",
inputs=["user_question", "answer"],
outputs=["analysis"],
system_prompt="You are a critical evaluator. Be brief but thorough."
)
graph.visualize()
result = graph.execute()
print("n" + "="*50)
print("EXECUTION RESULTS:")
print("="*50)
print(f"n
QUESTION:n{result.get('user_question')}n")
print(f"
ANSWER:n{result.get('answer')}n")
print(f"
ANALYSIS:n{result.get('analysis')}")
print("="*50 + "n")
return graph
The LangGraph class implements a lightweight framework for constructing and executing graph-based AI workflows using Claude from Anthropic. It allows users to define modular nodes, either Claude-powered prompts or custom transformation functions, connect them via dependencies, visualize the entire pipeline, and execute them in topological order. The run_example function demonstrates this by building a simple question-answering and evaluation flow, showcasing the clarity and modularity of LangGraph’s architecture.
def run_advanced_example():
"""Run a more advanced example with multiple nodes for content generation"""
graph = LangGraph()
def topic_selector(state, **kwargs):
return "Graph-based AI systems"
graph.transform_node(
name="topic_selector",
transform_fn=topic_selector,
outputs=["topic"]
)
graph.claude_node(
name="outline_generator",
prompt_template="Create a brief outline for a technical blog post about {topic}. Include 3-4 main sections only.",
inputs=["topic"],
outputs=["outline"],
system_prompt="You are a technical writer specializing in AI technologies."
)
graph.claude_node(
name="intro_writer",
prompt_template="Write an engaging introduction for a blog post with this outline: {outline}nTopic: {topic}",
inputs=["topic", "outline"],
outputs=["introduction"],
system_prompt="You are a technical writer. Write in a clear, engaging style."
)
graph.claude_node(
name="conclusion_writer",
prompt_template="Write a conclusion for a blog post with this outline: {outline}nTopic: {topic}",
inputs=["topic", "outline"],
outputs=["conclusion"],
system_prompt="You are a technical writer. Summarize key points and include a forward-looking statement."
)
def assembler(state, introduction, outline, conclusion, **kwargs):
return f"# {state['topic']}nn{introduction}nn## Outlinen{outline}nn## Conclusionn{conclusion}"
graph.transform_node(
name="content_assembler",
transform_fn=assembler,
inputs=["topic", "introduction", "outline", "conclusion"],
outputs=["final_content"]
)
graph.visualize()
result = graph.execute()
print("n" + "="*50)
print("BLOG POST GENERATED:")
print("="*50 + "n")
print(result.get("final_content"))
print("n" + "="*50)
return graph
The run_advanced_example function showcases a more sophisticated use of LangGraph by orchestrating multiple Claude-powered nodes to generate a complete blog post. It starts by selecting a topic, then creates an outline, an introduction, and a conclusion, all using structured Claude prompts. Finally, a transformation node assembles the content into a formatted blog post. This example demonstrates how LangGraph can automate complex, multi-step content generation tasks using modular, connected nodes in a clear and executable flow.
print("1. Running simple question-answering example")
question = "What are the three main advantages of using graph-based AI architectures?"
simple_graph = run_example(question)
print("n2. Running advanced blog post creation example")
advanced_graph = run_advanced_example()
Finally, we trigger the execution of both defined LangGraph workflows. First, it runs the simple question-answering example by passing a predefined question to the run_example() function. Then, it initiates the more advanced blog post generation workflow using run_advanced_example(). Together, these calls demonstrate the practical flexibility of LangGraph, from basic prompt-based interactions to multi-step content automation using Anthropic’s Claude API.
In conclusion, we have implemented LangGraph integrated with Anthropic’s Claude API, which illustrates the ease of designing modular AI workflows that leverage powerful language models in structured, graph-based pipelines. Through visualizing task flows and separating responsibilities among nodes, such as question processing, analytical evaluation, content outlining, and assembly, developers gain practical experience in building maintainable, scalable AI systems. LangGraph’s clear node dependencies and Claude’s sophisticated language capabilities provide an efficient solution for orchestrating complex AI processes, especially for rapid prototyping and execution in environments like Google Colab.
Check out the Colab Notebook. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.
The post A Step-by-Step Implementation Tutorial for Building Modular AI Workflows Using Anthropic’s Claude Sonnet 3.7 through API and LangGraph appeared first on MarkTechPost.
Source: Read MoreÂ