Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      10 Top Node.js Development Companies for Enterprise-Scale Projects (2025-2026 Ranked & Reviewed)

      July 4, 2025

      12 Must-Know Cost Factors When Hiring Node.js Developers for Your Enterprise

      July 4, 2025

      Mirantis reveals Lens Prism, an AI copilot for operating Kubernetes clusters

      July 3, 2025

      Avoid these common platform engineering mistakes

      July 3, 2025

      Just days after joining Game Pass, the Xbox PC edition of Call of Duty: WW2 is taken offline for “an issue”

      July 5, 2025

      Xbox layoffs and game cuts wreak havoc on talented developers and the company’s future portfolio — Weekend discussion 💬

      July 5, 2025

      Microsoft plans to revamp Recall in Windows 11 with these new features

      July 5, 2025

      This 4K OLED monitor has stereo speakers that follow you — but it’s missing something “imPORTant”

      July 5, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Flaget – new small 5kB CLI argument parser

      July 5, 2025
      Recent

      Flaget – new small 5kB CLI argument parser

      July 5, 2025

      The dog days of JavaScript summer

      July 4, 2025

      Databricks Lakebase – Database Branching in Action

      July 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Just days after joining Game Pass, the Xbox PC edition of Call of Duty: WW2 is taken offline for “an issue”

      July 5, 2025
      Recent

      Just days after joining Game Pass, the Xbox PC edition of Call of Duty: WW2 is taken offline for “an issue”

      July 5, 2025

      Xbox layoffs and game cuts wreak havoc on talented developers and the company’s future portfolio — Weekend discussion 💬

      July 5, 2025

      Microsoft plans to revamp Recall in Windows 11 with these new features

      July 5, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI Paper from Microsoft Introduces a DiskANN-Integrated System: A Cost-Effective and Low-Latency Vector Search Using Azure Cosmos DB

    This AI Paper from Microsoft Introduces a DiskANN-Integrated System: A Cost-Effective and Low-Latency Vector Search Using Azure Cosmos DB

    May 19, 2025

    The ability to search high-dimensional vector representations has become a core requirement for modern data systems. These vector representations, generated by deep learning models, encapsulate data’s semantic and contextual meanings. This enables systems to retrieve results not based on exact matches, but on relevance and similarity. Such semantic capabilities are essential in large-scale applications such as web search, AI-powered assistants, and content recommendations, where users and agents alike need access to information in a meaningful way rather than through structured queries alone.

    One of the main issues faced in vector-based retrieval is the high cost and complexity of operating separate systems for transactional data and vector indexes. Traditionally, vector databases are optimized solely for semantic search performance, but they require users to duplicate data from their primary databases, introducing latency, storage overhead, and risk of inconsistencies. Developers are also burdened with synchronizing two distinct systems, which can limit scalability, flexibility, and data integrity when updates occur rapidly.

    Some popular tools for vector search, like Zilliz and Pinecone, operate as standalone services that offer efficient similarity search. However, these platforms rely on segment-based or fully in-memory architectures. They often require repeated rebuilding of indices and can suffer from latency spikes and significant memory usage. This makes them inefficient in scenarios that involve large-scale or constantly changing data. The issue worsens when dealing with updates, filtering queries, or managing multiple tenants, as these systems lack deep integration with transactional operations and structured indexing.

    Researchers at Microsoft introduced an approach that integrates vector indexing directly into Azure Cosmos DB’s NoSQL engine. They used DiskANN, a graph-based indexing library already known for its performance in large-scale semantic search, and re-engineered it to work within Cosmos DB’s infrastructure. This design eliminates the need for a separate vector database. Cosmos DB’s built-in capabilities—such as high availability, elasticity, multi-tenancy, and automatic partitioning—are fully utilized, making the solution both cost-efficient and scalable. Each collection maintains a single vector index per partition, which is synchronized with the main document data using the existing Bw-Tree index structure.

    The rewritten DiskANN library uses Rust and introduces asynchronous operations to ensure compatibility with database environments. It allows the database to retrieve or update only necessary vector components, such as quantized versions or neighbor lists, reducing memory usage. Vector insertions and queries are managed using a hybrid approach, with most computations occurring in quantized space. This design supports paginated searches and filter-aware traversal, which means queries can efficiently handle complex predicates and scale across billions of vectors. The methodology also includes a sharded indexing mode, allowing separate indices based on defined keys, such as tenant ID or time period.

    In experiments, the system demonstrated strong performance. For a dataset of 10 million 768-dimensional vectors, query latency remained below 20 milliseconds (p50), and the system achieved a recall@10 of 94.64%. Compared to enterprise-tier offerings, Azure Cosmos DB provided query costs that were 15× lower than Zilliz and 41× lower than Pinecone. Cost-efficiency was maintained even as the index increased from 100,000 to 10 million vectors, with less than a 2× rise in latency or Request Units (RUs). On ingestion, Cosmos DB charged about $162.5 for 10 million vector inserts, which was lower than Pinecone and DataStax, though higher than Zilliz. Furthermore, recall remained stable even during heavy update cycles, with in-place deletions significantly improving accuracy in shifting data distributions.

    The study presents a compelling solution to unifying vector search with transactional databases. The research team from Microsoft designed a system that simplifies operations and achieves considerable performance in cost, latency, and scalability. By embedding vector search within Cosmos DB, they offer a practical template for integrating semantic capabilities directly into operational workloads.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post This AI Paper from Microsoft Introduces a DiskANN-Integrated System: A Cost-Effective and Low-Latency Vector Search Using Azure Cosmos DB appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleOmni-R1: Advancing Audio Question Answering with Text-Driven Reinforcement Learning and Auto-Generated Data
    Next Article HERE Technologies boosts developer productivity with new generative AI-powered coding assistant

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 5, 2025
    Machine Learning

    Soup-of-Experts: Pretraining Specialist Models via Parameters Averaging

    July 4, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-46154 – Foxcms SQL Time Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-48735 – BOS IPC SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-21463 – Cisco Wireless EHT IE Beacon Frame Processing Denial of Service

    Common Vulnerabilities and Exposures (CVEs)

    I took my ROG Ally X to Taiwan in this magnetic case, and going zipperless went better than I thought it would

    News & Updates

    Highlights

    CVE-2025-5747 – WOLFBOX Level 2 EV Charger Remote Code Execution Vulnerability

    June 6, 2025

    CVE ID : CVE-2025-5747

    Published : June 6, 2025, 4:15 p.m. | 1 hour, 44 minutes ago

    Description : WOLFBOX Level 2 EV Charger MCU Command Parsing Misinterpretation of Input Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installatons of WOLFBOX Level 2 EV Charger devices. Authentication is required to exploit this vulnerability.

    The specific flaw exists within the handling of command frames received by the MCU. When parsing frames, the process does not properly detect the start of a frame, which can lead to misinterpretation of input. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the device. Was ZDI-CAN-26501.

    Severity: 8.0 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Making V8 eager to compile your JavaScript

    May 2, 2025

    “We pitched it for 10 years and we weren’t sure if it was going to go into orbit” — Discussing ‘A Minecraft Movie’ as it breaks records on the way to streaming

    May 15, 2025

    Orca Security announces new solution for scanning Bitbucket repositories for security issues

    April 10, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.