Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 18, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 18, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 18, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 18, 2025

      I need to see more from Lenovo’s most affordable gaming desktop, because this isn’t good enough

      May 18, 2025

      Gears of War: Reloaded — Release date, price, and everything you need to know

      May 18, 2025

      I’ve been using the Logitech MX Master 3S’ gaming-influenced alternative, and it could be your next mouse

      May 18, 2025

      Your Android devices are getting several upgrades for free – including a big one for Auto

      May 18, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      YTConverter™ lets you download YouTube videos/audio cleanly via terminal — especially great for Termux users.

      May 18, 2025
      Recent

      YTConverter™ lets you download YouTube videos/audio cleanly via terminal — especially great for Termux users.

      May 18, 2025

      NodeSource N|Solid Runtime Release – May 2025: Performance, Stability & the Final Update for v18

      May 17, 2025

      Big Changes at Meteor Software: Our Next Chapter

      May 17, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      I need to see more from Lenovo’s most affordable gaming desktop, because this isn’t good enough

      May 18, 2025
      Recent

      I need to see more from Lenovo’s most affordable gaming desktop, because this isn’t good enough

      May 18, 2025

      Gears of War: Reloaded — Release date, price, and everything you need to know

      May 18, 2025

      I’ve been using the Logitech MX Master 3S’ gaming-influenced alternative, and it could be your next mouse

      May 18, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»SWE-Bench Performance Reaches 50.8% Without Tool Use: A Case for Monolithic State-in-Context Agents

    SWE-Bench Performance Reaches 50.8% Without Tool Use: A Case for Monolithic State-in-Context Agents

    May 18, 2025

    Recent advancements in LM agents have shown promising potential for automating intricate real-world tasks. These agents typically operate by proposing and executing actions through APIs, supporting applications such as software engineering, robotics, and scientific experimentation. As these tasks become more complex, LM agent frameworks have evolved to include multiple agents, multi-step retrieval, and tailored scaffolding to optimize performance. A central challenge lies in effectively exploring and understanding the environment, which has prompted the development of engineered scaffolds using tools, memory mechanisms, and custom pipelines. However, most existing methods assume partial observability, requiring agents to collect observations incrementally. While this assumption holds in dynamic or unfamiliar environments, it is less applicable in fully observable settings like SWE-bench, where all relevant information is accessible from the start.

    In software engineering, research on LM agents has focused on two main strategies: agent-based frameworks and structured pipelines. Agent-based systems, such as SWE-Agent and OpenHands CodeAct, allow LMs to interact autonomously with codebases, often through custom interfaces and retrieval tools. Other models like Moatless and AutoCodeRover enhance localization through search techniques, while SpecRover refines scaffolding design. Alternatively, structured pipelines—such as Agentless and CodeMonkey—decompose tasks into sequential phases like localization, repair, and validation. While these approaches depend on engineered components for performance, the current study proposes leveraging Long-Context LMs (LCLMs) to directly interpret the entire task environment. Advances in LCLM architecture and infrastructure now allow these models to outperform retrieval-augmented systems in many contexts, reducing reliance on complex external scaffolding. 

    Researchers from Stanford, IBM, and the University of Toronto explored whether complex scaffolding is necessary for LM agents tackling tasks like SWE-bench. They show that simply using LCLMs, such as Gemini-1.5-Pro, with proper prompting and no scaffolding, can achieve competitive performance—reaching 38% on SWE-Bench-Verified. Gemini-2.5-Pro, using the same simple setup, reaches 50.8%. Their work suggests that many complex agentic designs could be replaced with a single powerful LCLM, simplifying architecture and training. Additionally, a hybrid two-stage approach using Gemini-1.5-Pro and Claude-3.7 achieves a 48.6% solve rate, further supporting this simplified direction. 

    Traditional LM agents rely on interactive exploration due to partial observability, but many tasks, like software debugging, allow full observability. The study proposes state-in-context agents that leverage LCLMs to directly process full or compressed environment states, bypassing the need for complex agentic scaffolding. For large codebases, a ranking-based compression selects relevant files to fit within context limits. Two methods are introduced: DIRECTSOLVE, where LCLMs solve tasks using the full context; and SELECTSOLVE, where LCLMs localize relevant files for short-context LMs (SCLMs) to solve. Both use targeted patch formats and validation to ensure accuracy and reduce hallucination. 

    The experiments evaluate a simplified agent framework using LLMs on the SWE-bench Verified benchmark, which includes 500 real-world software engineering tasks. The proposed methods, DIRECTSOLVE and SELECTSOLVE, utilize LCLMs like Gemini-1.5-Pro and Gemini-2.5-Pro, and in SELECTSOLVE, an additional SCLM (Claude-3.7-Sonnet) for patch generation. Results show that DIRECTSOLVE outperforms complex agentic approaches like Agentless and CodeAct with minimal engineering. SELECTSOLVE further improves accuracy by leveraging stronger models for patching. Ablation studies highlight the importance of CoT prompting, code restatement, and token-efficient context design. Additionally, positioning relevant files at the start of the prompt improves performance, underscoring limitations in long-context processing. 

    In conclusion, the cost of using LCLM-based methods is currently higher than existing approaches like Agentless and CodeAct, averaging $2.60 per instance compared to $0.25 and $0.87, respectively. However, rapid drops in inference costs and increasing context lengths make LCLMs more practical. Techniques like KV caching significantly lower costs after initial runs, reducing it to about $0.725. Although slight codebase changes still limit caching benefits, further improvements could help. The study also suggests that LCLMs can handle long interaction histories, reducing the need for complex memory and retrieval mechanisms. Notably, unscaffolded LCLM models can perform competitively on SWE-bench tasks. 


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post SWE-Bench Performance Reaches 50.8% Without Tool Use: A Case for Monolithic State-in-Context Agents appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow to Build a Powerful and Intelligent Question-Answering System by Using Tavily Search API, Chroma, Google Gemini LLMs, and the LangChain Framework
    Next Article Free LinkedIn Text Formatter

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    May 18, 2025
    Machine Learning

    How to Build a Powerful and Intelligent Question-Answering System by Using Tavily Search API, Chroma, Google Gemini LLMs, and the LangChain Framework

    May 18, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Evaluate conversational AI agents with Amazon Bedrock

    Development

    Together AI Introduces Mixture of Agents (MoA): An AI Framework that Leverages the Collective Strengths of Multiple LLMs to Improve State-of-the-Art Quality

    Development

    Need to relax? This new iPhone feature does the trick for me – here’s how

    News & Updates

    I can’t believe I just paid to bring this Windows 10 feature to Windows 11

    News & Updates

    Highlights

    Development

    British Columbia Discloses Multiple ‘Cybersecurity Incidents’ Impacting Government Networks

    May 10, 2024

    British Columbia in Canada has faced multiple “sophisticated cybersecurity incidents” on government networks, province premier…

    ZEISS Demonstrates the Power of Scalable Workflows with Ampere Altra and SpinKube

    January 23, 2025

    Windows Downgrade Attack Risks Exposing Patched Systems to Old Vulnerabilities

    August 8, 2024

    A Zombie World

    April 15, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.