Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Full-Stack Techies vs Toptal: Which Is Better for React.js Outsourcing?

      July 3, 2025

      The AI productivity paradox in software engineering: Balancing efficiency and human skill retention

      July 2, 2025

      The impact of gray work on software development

      July 2, 2025

      CSS Intelligence: Speculating On The Future Of A Smarter Language

      July 2, 2025

      Your Roku has secret menus and screens – here’s how to unlock them

      July 3, 2025

      Add Paramount+, STARZ, and more to your Prime Video account for $0.99 a month – here’s how

      July 3, 2025

      My new favorite keychain accessory gives me 2TB of SSD storage instantly

      July 3, 2025

      HP’s latest OmniBook finally sold me on the 2-in-1 form factor (and it’s on sale)

      July 3, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Simplifying Stream Handling with Laravel’s resource Method

      July 3, 2025
      Recent

      Simplifying Stream Handling with Laravel’s resource Method

      July 3, 2025

      Intelligent Parsing and Formatting of Names in PHP Applications

      July 3, 2025

      This Week in Laravel: Cursor Rules, Nightwatch Review, and Race Conditions

      July 3, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft confirms Windows 11 KB5060829 issues, but you can safely ignore it

      July 3, 2025
      Recent

      Microsoft confirms Windows 11 KB5060829 issues, but you can safely ignore it

      July 3, 2025

      Hash Calculator – calculates around 50 cryptographic hashes of strings and files

      July 3, 2025

      Rilasciato Thunderbird 140 ESR: Un’attenzione alle esigenze aziendali

      July 3, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Salesforce AI Releases BLIP3-o: A Fully Open-Source Unified Multimodal Model Built with CLIP Embeddings and Flow Matching for Image Understanding and Generation

    Salesforce AI Releases BLIP3-o: A Fully Open-Source Unified Multimodal Model Built with CLIP Embeddings and Flow Matching for Image Understanding and Generation

    May 17, 2025

    Multimodal modeling focuses on building systems to understand and generate content across visual and textual formats. These models are designed to interpret visual scenes and produce new images using natural language prompts. With growing interest in bridging vision and language, researchers are working toward integrating image recognition and image generation capabilities into a unified system. This approach eliminates the need for separate pipelines and opens the path to more coherent and intelligent interactions across modalities.

    A key challenge in this field is to develop architectures that handle both understanding and generation without compromising the quality of either. Models need to grasp complex visual concepts and produce high-quality images matching user prompts. The difficulty lies in identifying suitable picture representations and training procedures that support both tasks. This problem becomes more evident when the same model is expected to interpret detailed text descriptions and generate visually accurate outputs based on them. It requires alignment of semantic understanding and pixel-level synthesis.

    Previous approaches have generally used Variational Autoencoders (VAEs) or CLIP-based encoders to represent images. VAEs are efficient for reconstruction but encode lower-level features, often leading to less informative representations. CLIP-based encoders provide high-level semantic embeddings by learning from large-scale image-text pairs. However, CLIP was not built for image reconstruction, making it challenging to use for generation unless paired with models like diffusion decoders. In terms of training, Mean Squared Error (MSE) is widely used for simplicity but tends to produce deterministic outputs. To improve generation diversity and quality, researchers have turned to Flow Matching, which introduces controlled stochasticity and better models the continuous nature of image features.

    Researchers from Salesforce Research, in collaboration with the University of Maryland and several academic institutions, introduced BLIP3-o, a family of unified multimodal models. The model adopts a dual-stage training strategy where image understanding is learned first, followed by image generation. The proposed system leverages CLIP embeddings to represent images and integrates them with a diffusion transformer to synthesize new visual outputs. Unlike previous joint training methods, the sequential approach maintains the strength of each task independently. The diffusion module is trained while keeping the autoregressive backbone frozen, avoiding task interference. To improve alignment and visual fidelity, the team also curated BLIP3o-60k, a high-quality instruction-tuning dataset created by prompting GPT-4o across varied visual categories, including scenes, objects, gestures, and text. They developed two model versions: an 8-billion parameter model trained with proprietary and public data, and a 4-billion version using only open-source data.

    The image generation pipeline of BLIP3-o is built on Qwen2.5-VL large language models. Prompts are processed to produce visual features refined through a Flow Matching diffusion transformer. This transformer is based on the Lumina-Next architecture, optimized for speed and quality with 3D rotary position embedding and grouped-query attention. The model encodes each image into 64 fixed-length semantic vectors, regardless of resolution, which supports compact storage and efficient decoding. The research team used a large-scale dataset of 25 million images from sources like CC12M, SA-1B, and JourneyDB to train the models. They extended it with 30 million proprietary samples for the 8B model. They also included 60k instruction-tuning samples covering challenging prompts such as complex gestures and landmarks, generated via GPT-4o.

    In terms of performance, BLIP3-o demonstrated top scores across multiple benchmarks. The 8B model achieved a GenEval score of 0.84 for image generation alignment and a WISE score of 0.62 for reasoning ability. Image understanding scored 1682.6 on MME-Perception, 647.1 on MME-Cognition, 50.6 on MMMU, and 83.1 on both VQAv2 and TextVQA datasets. A human evaluation comparing BLIP3-o 8B with Janus Pro 7B showed that BLIP3-o was preferred 50.4% of the time for visual quality and 51.5% for prompt alignment. These results are supported by statistically significant p-values (5.05e-06 and 1.16e-05), indicating the superiority of BLIP3-o in subjective quality assessments.

    This research outlines a clear solution to the dual challenge of image understanding and generation. CLIP embeddings, Flow Matching, and a sequential training strategy demonstrate how the problem can be approached methodically. The BLIP3-o model delivers state-of-the-art results and introduces an efficient and open approach to unified multimodal modeling.


    Check out the Paper, GitHub Page and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    The post Salesforce AI Releases BLIP3-o: A Fully Open-Source Unified Multimodal Model Built with CLIP Embeddings and Flow Matching for Image Understanding and Generation appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleWindsurf Launches SWE-1: A Frontier AI Model Family for End-to-End Software Engineering
    Next Article AI Agents Now Write Code in Parallel: OpenAI Introduces Codex, a Cloud-Based Coding Agent Inside ChatGPT

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 3, 2025
    Machine Learning

    The Super Weight in Large Language Models

    July 2, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    How to upskill software engineering teams in the age of AI

    Tech & Work

    CVE-2025-42995 – SAP MDM Server Denial of Service (DoS)

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-5677 – Campcodes Online Recruitment Management System SQL Injection

    Common Vulnerabilities and Exposures (CVEs)

    5 simple ways to start taking control of your online privacy today

    News & Updates

    Highlights

    News & Updates

    “It’s not even funny anymore.” Helldivers 2 players are putting the underwhelming new Warbond on blast, and I’m with them

    May 10, 2025

    Helldivers 2 developer Arrowhead has finally announced the game’s new Masters of Ceremony Warbond, but…

    Apple Machine Learning Research at ICLR 2025

    April 21, 2025

    CVE-2025-5509 – Quequnlong Shiyi-Blog Remote Path Traversal Vulnerability

    June 3, 2025

    The designer’s handbook for developer handoff

    April 8, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.