Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 12, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 12, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 12, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 12, 2025

      Microsoft aims to be “carbon negative” by 2030, with 3 million carbon removal credits in its backyard of Washington

      May 12, 2025

      Sam Altman doesn’t want his son to have an AI “bestie” — as Microsoft plans to turn Copilot into an AI friend and companion

      May 12, 2025

      ChatGPT downplays AI’s threat to humanity despite an apparent “99.999999% probability” of inevitable doom

      May 12, 2025

      Surface Pro 12-inch vs. iPad Air M3: Which should you choose?

      May 12, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      A customizable and accessible web component

      May 12, 2025
      Recent

      A customizable and accessible web component

      May 12, 2025

      How Agile Helps You Improve Your Agility

      May 12, 2025

      Laravel Seeder Generator

      May 12, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft aims to be “carbon negative” by 2030, with 3 million carbon removal credits in its backyard of Washington

      May 12, 2025
      Recent

      Microsoft aims to be “carbon negative” by 2030, with 3 million carbon removal credits in its backyard of Washington

      May 12, 2025

      Sam Altman doesn’t want his son to have an AI “bestie” — as Microsoft plans to turn Copilot into an AI friend and companion

      May 12, 2025

      ChatGPT downplays AI’s threat to humanity despite an apparent “99.999999% probability” of inevitable doom

      May 12, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Multimodal AI Needs More Than Modality Support: Researchers Propose General-Level and General-Bench to Evaluate True Synergy in Generalist Models

    Multimodal AI Needs More Than Modality Support: Researchers Propose General-Level and General-Bench to Evaluate True Synergy in Generalist Models

    May 12, 2025

    Artificial intelligence has grown beyond language-focused systems, evolving into models capable of processing multiple input types, such as text, images, audio, and video. This area, known as multimodal learning, aims to replicate the natural human ability to integrate and interpret varied sensory data. Unlike conventional AI models that handle a single modality, multimodal generalists are designed to process and respond across formats. The goal is to move closer to creating systems that mimic human cognition by seamlessly combining different types of knowledge and perception.

    The challenge faced in this field lies in enabling these multimodal systems to demonstrate true generalization. While many models can process multiple inputs, they often fail to transfer learning across tasks or modalities. This absence of cross-task enhancement—known as synergy—hinders progress toward more intelligent and adaptive systems. A model may excel in image classification and text generation separately, but it cannot be considered a robust generalist without the ability to connect skills from both domains. Achieving this synergy is essential for developing more capable, autonomous AI systems.

    Many current tools rely heavily on large language models (LLMs) at their core. These LLMs are often supplemented with external, specialized components tailored to image recognition or speech analysis tasks. For example, existing models such as CLIP or Flamingo integrate language with vision but do not deeply connect the two. Instead of functioning as a unified system, they depend on loosely coupled modules that mimic multimodal intelligence. This fragmented approach means the models lack the internal architecture necessary for meaningful cross-modal learning, resulting in isolated task performance rather than holistic understanding.

    Researchers from the National University of Singapore (NUS), Nanyang Technological University (NTU), Zhejiang University (ZJU), Peking University (PKU), and others proposed an AI framework named General-Level and a benchmark called General-Bench. These tools are built to measure and promote synergy across modalities and tasks. General-Level establishes five levels of classification based on how well a model integrates comprehension, generation, and language tasks. The benchmark is supported by General-Bench, a large dataset encompassing over 700 tasks and 325,800 annotated examples drawn from text, images, audio, video, and 3D data.

    The evaluation method within General-Level is built on the concept of synergy. Models are assessed by task performance and their ability to exceed state-of-the-art (SoTA) specialist scores using shared knowledge. The researchers define three types of synergy—task-to-task, comprehension-generation, and modality-modality—and require increasing capability at each level. For example, a Level-2 model supports many modalities and tasks, while a Level-4 model must exhibit synergy between comprehension and generation. Scores are weighted to reduce bias from modality dominance and encourage models to support a balanced range of tasks.

    The researchers tested 172 large models, including over 100 top-performing MLLMs, against General-Bench. Results revealed that most models do not demonstrate the needed synergy to qualify as higher-level generalists. Even advanced models like GPT-4V and GPT-4o did not reach Level 5, which requires models to use non-language inputs to improve language understanding. The highest-performing models managed only basic multimodal interactions, and none showed evidence of total synergy across tasks and modalities. For instance, the benchmark showed 702 tasks assessed across 145 skills, yet no model achieved dominance in all areas. General-Bench’s coverage across 29 disciplines, using 58 evaluation metrics, set a new standard for comprehensiveness.

    This research clarifies the gap between current multimodal systems and the ideal generalist model. The researchers address a core issue in multimodal AI by introducing tools prioritizing integration over specialization. With General-Level and General-Bench, they offer a rigorous path forward for assessing and building models that handle various inputs and learn and reason across them. Their approach helps steer the field toward more intelligent systems with real-world flexibility and cross-modal understanding.


    Check out the Paper and Project Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    Here’s a brief overview of what we’re building at Marktechpost:

    • ML News Community – r/machinelearningnews (92k+ members)
    • Newsletter– airesearchinsights.com/(30k+ subscribers)
    • miniCON AI Events – minicon.marktechpost.com
    • AI Reports & Magazines – magazine.marktechpost.com
    • AI Dev & Research News – marktechpost.com (1M+ monthly readers)
    • Partner with us

    The post Multimodal AI Needs More Than Modality Support: Researchers Propose General-Level and General-Bench to Evaluate True Synergy in Generalist Models appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleCVE-2023-49641 – Oracle Billing Software SQL Injection Vulnerability
    Next Article CVE-2025-35471 – Conda Forge OpenSSL-Feedstock Local Privilege Escalation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    May 12, 2025
    Machine Learning

    NVIDIA AI Introduces Audio-SDS: A Unified Diffusion-Based Framework for Prompt-Guided Audio Synthesis and Source Separation without Specialized Datasets

    May 12, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Unveiling the Power of Design Languages

    Development

    Dash to Panel GNOME Extension Gets Big Update

    Linux

    FBI Warns of RansomHub: Over 200 Victims Targeted

    Development

    Light3R-SfM: A Scalable and Efficient Feed-Forward Approach to Structure-from-Motion

    Machine Learning
    Hostinger

    Highlights

    Artificial Intelligence

    AI’s Greatest Threat? Elon Musk Sounds the Alarm on the ‘Woke Mind Virus’ – Part 2 of the Research Article

    March 16, 2025

    Introduction Elon Musk’s warning about AI being infected with a “woke mind virus” has ignited…

    A Beginner’s Perspective on Generative AI

    December 30, 2024

    Iranian Cyber Group TA453 Targets Jewish Leader with New AnvilEcho Malware

    August 20, 2024

    Indiana Jones and the Great Circle gets its first patch on Xbox and PC, with a nice feature for those of you with particularly beefy NVIDIA GPUs

    December 8, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.