Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Power Of The Intl API: A Definitive Guide To Browser-Native Internationalization

      August 8, 2025

      This week in AI dev tools: GPT-5, Claude Opus 4.1, and more (August 8, 2025)

      August 8, 2025

      Elastic simplifies log analytics for SREs and developers with launch of Log Essentials

      August 7, 2025

      OpenAI launches GPT-5

      August 7, 2025

      I compared the best headphones from Apple, Sony, Bose, and Sonos: Here’s how the AirPods Max wins

      August 10, 2025

      I changed these 6 settings on my iPad to significantly improve its battery life

      August 10, 2025

      DistroWatch Weekly, Issue 1134

      August 10, 2025

      3 portable power stations I travel everywhere with (and how they differ)

      August 9, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Next.js PWA offline capability with Service Worker, no extra package

      August 10, 2025
      Recent

      Next.js PWA offline capability with Service Worker, no extra package

      August 10, 2025

      spatie/laravel-flare

      August 9, 2025

      Establishing Consistent Data Foundations with Laravel’s Database Population System

      August 8, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Windows 11 Copilot gets free access to GPT-5 Thinking, reduced rate limits than ChatGPT Free

      August 10, 2025
      Recent

      Windows 11 Copilot gets free access to GPT-5 Thinking, reduced rate limits than ChatGPT Free

      August 10, 2025

      Best Architecture AI Rendering Platform: 6 Tools Tested

      August 10, 2025

      Microsoft won’t kill off Chromium Edge and PWAs on Windows 10 until October 2028

      August 10, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Tencent Released PrimitiveAnything: A New AI Framework That Reconstructs 3D Shapes Using Auto-Regressive Primitive Generation

    Tencent Released PrimitiveAnything: A New AI Framework That Reconstructs 3D Shapes Using Auto-Regressive Primitive Generation

    May 11, 2025

    Shape primitive abstraction, which breaks down complex 3D forms into simple, interpretable geometric units, is fundamental to human visual perception and has important implications for computer vision and graphics. While recent methods in 3D generation—using representations like meshes, point clouds, and neural fields—have enabled high-fidelity content creation, they often lack the semantic depth and interpretability needed for tasks such as robotic manipulation or scene understanding. Traditionally, primitive abstraction has been tackled using either optimization-based methods, which fit geometric primitives to shapes but often over-segment them semantically, or learning-based methods, which train on small, category-specific datasets and thus lack generalization. Early approaches used basic primitives like cuboids and cylinders, later evolving to more expressive forms like superquadrics. However, a major challenge persists in designing methods that can abstract shapes in a way that aligns with human cognition while also generalizing across diverse object categories.

    Inspired by recent breakthroughs in 3D content generation using large datasets and auto-regressive transformers, the authors propose reframing shape abstraction as a generative task. Rather than relying on geometric fitting or direct parameter regression, their approach sequentially constructs primitive assemblies to mirror human reasoning. This design more effectively captures both semantic structure and geometric accuracy. Prior works in auto-regressive modeling—such as MeshGPT and MeshAnything—have shown strong results in mesh generation by treating 3D shapes as sequences, incorporating innovations like compact tokenization and shape conditioning. 

    PrimitiveAnything is a framework developed by researchers from Tencent AIPD and Tsinghua University that redefines shape abstraction as a primitive assembly generation task. It introduces a decoder-only transformer conditioned on shape features to generate sequences of variable-length primitives. The framework employs a unified, ambiguity-free parameterization scheme that supports multiple primitive types while maintaining high geometric accuracy and learning efficiency. By learning directly from human-designed shape abstractions, PrimitiveAnything effectively captures how complex shapes are broken into simpler components. Its modular design supports easy integration of new primitive types, and experiments show it produces high-quality, perceptually aligned abstractions across diverse 3D shapes. 

    PrimitiveAnything is a framework that models 3D shape abstraction as a sequential generation task. It uses a discrete, ambiguity-free parameterization to represent each primitive’s type, translation, rotation, and scale. These are encoded and fed into a transformer, which predicts the next primitive based on prior ones and shape features extracted from point clouds. A cascaded decoder models dependencies between attributes, ensuring coherent generation. Training combines cross-entropy losses, Chamfer Distance for reconstruction accuracy, and Gumbel-Softmax for differentiable sampling. The process continues autoregressively until an end-of-sequence token signals completion, enabling flexible and human-like decomposition of complex 3D shapes. 

    The researchers introduce a large-scale HumanPrim dataset comprising 120K 3D samples with manually annotated primitive assemblies. Their method is evaluated using metrics like Chamfer Distance, Earth Mover’s Distance, Hausdorff Distance, Voxel-IoU, and segmentation scores (RI, VOI, SC). Compared to existing optimization- and learning-based methods, it shows superior performance and better alignment with human abstraction patterns. Ablation studies confirm the importance of each design component. Additionally, the framework supports 3D content generation from text or image inputs. It offers user-friendly editing, high modeling quality, and over 95% storage saving, making it well-suited for efficient and interactive 3D applications. 

    In conclusion, PrimitiveAnything is a new framework that approaches 3D shape abstraction as a sequence generation task. By learning from human-designed primitive assemblies, the model effectively captures intuitive decomposition patterns. It achieves high-quality results across various object categories, highlighting its strong generalization ability. The method also supports flexible 3D content creation using primitive-based representations. Due to its efficiency and lightweight structure, PrimitiveAnything is well-suited for enabling user-generated content in applications such as gaming, where both performance and ease of manipulation are essential. 


    Check out Paper, Demo and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 90k+ ML SubReddit.

    Here’s a brief overview of what we’re building at Marktechpost:

    • ML News Community – r/machinelearningnews (92k+ members)
    • Newsletter– airesearchinsights.com/(30k+ subscribers)
    • miniCON AI Events – minicon.marktechpost.com
    • AI Reports & Magazines – magazine.marktechpost.com
    • AI Dev & Research News – marktechpost.com (1M+ monthly readers)
    • Partner with us

    The post Tencent Released PrimitiveAnything: A New AI Framework That Reconstructs 3D Shapes Using Auto-Regressive Primitive Generation appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleA Coding Implementation of Accelerating Active Learning Annotation with Adala and Google Gemini
    Next Article ThumbnailPilot

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    August 10, 2025
    Machine Learning

    AI Agent Trends of 2025: A Transformative Landscape

    August 10, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Rilasciato PeaZip 10.6: Il Gestore di Archivi Open Source per Tutti i Sistemi Operativi

    Linux

    CVE-2025-49439 – Mariusz88AtelierWeb Atelier Create CV CSRF Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    SonicWall SMA Devices Under Attack: UNC6148 Deploys OVERSTEP Rootkit for Persistent Access

    Security

    Apple celebrates Global Running Day with a new Apple Watch reward – how to get it

    News & Updates

    Highlights

    CVE-2025-4335 – “WordPress Woocommerce Multiple Addresses Privilege Escalation Vulnerability”

    May 6, 2025

    CVE ID : CVE-2025-4335

    Published : May 7, 2025, 3:15 a.m. | 20 minutes ago

    Description : The Woocommerce Multiple Addresses plugin for WordPress is vulnerable to Privilege Escalation in all versions up to, and including, 1.0.7.1. This is due to insufficient restrictions on user meta that can be updated through the save_multiple_shipping_addresses() function. This makes it possible for authenticated attackers, with Subscriber-level access and above, to elevate their privileges to that of an administrator.

    Severity: 8.8 | HIGH

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Birth of Unix

    April 13, 2025

    CVE-2025-3812 – WordPress WPBot Pro File Deletion Vulnerability

    May 17, 2025

    How to Download & Install Deltarune on PC (Windows 10/11)

    June 5, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.