Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      React.js for SaaS Platforms: How Top Development Teams Help Startups Launch Faster

      August 3, 2025

      Upwork Freelancers vs Dedicated React.js Teams: What’s Better for Your Project in 2025?

      August 1, 2025

      Is Agile dead in the age of AI?

      August 1, 2025

      Top 15 Enterprise Use Cases That Justify Hiring Node.js Developers in 2025

      July 31, 2025

      Unplugging these 7 common household devices helped reduce my electricity bills

      August 3, 2025

      DistroWatch Weekly, Issue 1133

      August 3, 2025

      Anthropic beats OpenAI as the top LLM provider for business – and it’s not even close

      August 2, 2025

      I bought Samsung’s Galaxy Watch Ultra 2025 – here’s why I have buyer’s remorse

      August 2, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The details of TC39’s last meeting

      August 3, 2025
      Recent

      The details of TC39’s last meeting

      August 3, 2025

      Enhancing Laravel Queries with Reusable Scope Patterns

      August 1, 2025

      Everything We Know About Livewire 4

      August 1, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      DistroWatch Weekly, Issue 1133

      August 3, 2025
      Recent

      DistroWatch Weekly, Issue 1133

      August 3, 2025

      Newelle, a ‘Virtual Assistant’ for GNOME, Hits Version 1.0

      August 3, 2025

      Bustle – visualize D-Bus activity

      August 3, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Vision Foundation Models: Implementation and Business Applications

    Vision Foundation Models: Implementation and Business Applications

    May 3, 2025

    In this tutorial, we’ll explore implementing various vision foundation models for business applications. We’ll focus on practical code implementation, technical details, and business use cases rather than theoretical aspects.

    Setup and Environment Configuration

    First, let’s set up our environment and install the necessary libraries:

    Copy CodeCopiedUse a different Browser
    !pip install torch torchvision transformers timm pillow matplotlib opencv-python tensorflow-hub tensorflow
    !pip install huggingface_hub sentence-transformers ftfy regex tqdm
    !pip install accelerate

    # Verify CUDA availability for GPU acceleration

    Copy CodeCopiedUse a different Browser
    import torch
    print(f"PyTorch version: {torch.__version__}")
    print(f"CUDA available: {torch.cuda.is_available()}")
    if torch.cuda.is_available():
       print(f"CUDA device: {torch.cuda.get_device_name(0)}")

    1. CLIP: Contrastive Language-Image Pre-training

    CLIP by OpenAI excels at connecting images with natural language, making it powerful for zero-shot image classification and retrieval tasks.

    Business Applications:

    • Product image search and recommendation
    • Content moderation
    • Visual brand monitoring
    • Cross-modal retrieval systems
    Copy CodeCopiedUse a different Browser
    import torch
    from PIL import Image
    import requests
    from transformers import CLIPProcessor, CLIPModel
    import matplotlib.pyplot as plt
    import numpy as np
    
    
    # Load model and processor
    model_id = "openai/clip-vit-base-patch32"
    model = CLIPModel.from_pretrained(model_id)
    processor = CLIPProcessor.from_pretrained(model_id)
    
    
    # Function to get image embeddings
    def get_clip_image_embedding(image_path):
       image = Image.open(image_path) if isinstance(image_path, str) else image_path
       inputs = processor(images=image, return_tensors="pt")
       with torch.no_grad():
           image_features = model.get_image_features(**inputs)
       return image_features
    
    
    # Function to perform zero-shot classification
    def classify_image_with_clip(image_path, categories):
       image = Image.open(image_path) if isinstance(image_path, str) else image_path
       inputs = processor(
           text=categories,
           images=image,
           return_tensors="pt",
           padding=True
       )
    
    
       with torch.no_grad():
           outputs = model(**inputs)
           logits_per_image = outputs.logits_per_image
           probs = logits_per_image.softmax(dim=1)
    
    
       # Return dict of categories and probabilities
       return {categories[i]: probs[0][i].item() for i in range(len(categories))}
    
    
    # Example: Product categorization
    url = "https://images.unsplash.com/photo-1542291026-7eec264c27ff?q=80&w=1470&auto=format&fit=crop"
    image = Image.open(requests.get(url, stream=True).raw)
    
    
    product_categories = [
       "sneakers", "formal shoes", "sandals", "boots",
       "sports equipment", "casual wear", "luxury item"
    ]
    
    
    results = classify_image_with_clip(image, product_categories)
    
    
    # Sort results by probability
    sorted_results = dict(sorted(results.items(), key=lambda x: x[1], reverse=True))
    
    
    # Display the image and classification results
    plt.figure(figsize=(12, 6))
    
    
    # Plot the image on the left
    plt.subplot(1, 2, 1)
    plt.imshow(np.array(image))
    plt.title("Input Image")
    plt.axis("off")
    
    
    # Plot the classification results on the right
    plt.subplot(1, 2, 2)
    categories = list(sorted_results.keys())
    scores = list(sorted_results.values())
    
    
    y_pos = np.arange(len(categories))
    plt.barh(y_pos, scores, align="center")
    plt.yticks(y_pos, categories)
    plt.xlabel("Probability")
    plt.title("CLIP Classification Results")
    
    
    plt.tight_layout()
    plt.show()
    
    
    # Also print results to console
    print("Classification Results:")
    for category, score in sorted_results.items():
       print(f"{category}: {score:.4f}")
    Output

    2. DINO v2: Self-supervised Vision Transformer

    DINO v2 by Meta AI Research provides powerful visual features without requiring labeled data, making it excellent for various downstream tasks.

    Business Applications:

    • Visual similarity search
    • Anomaly detection
    • Product clustering
    • Image feature extraction for downstream ML tasks
    Copy CodeCopiedUse a different Browser
    import torch
    import torchvision.transforms as T
    from PIL import Image
    import numpy as np
    import matplotlib.pyplot as plt
    from torch.nn import functional as F
    import requests
    from io import BytesIO
    
    
    # Load DINOv2 model
    dinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
    dinov2_vits14.eval()
    
    
    # Preprocess images for DINOv2
    transform = T.Compose([
       T.Resize(256),
       T.CenterCrop(224),
       T.ToTensor(),
       T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    
    
    # Function to extract features
    def extract_dinov2_features(image_path):
       image = Image.open(image_path).convert('RGB') if isinstance(image_path, str) else image_path
       img_tensor = transform(image).unsqueeze(0)
    
    
       with torch.no_grad():
           features = dinov2_vits14(img_tensor)
    
    
       return features
    
    
    # Function to compute similarity between images
    def compute_similarity(img1_path, img2_path):
       feat1 = extract_dinov2_features(img1_path)
       feat2 = extract_dinov2_features(img2_path)
    
    
       # Normalize features
       feat1 = F.normalize(feat1, dim=1)
       feat2 = F.normalize(feat2, dim=1)
    
    
       # Compute cosine similarity
       similarity = torch.mm(feat1, feat2.transpose(0, 1)).item()
       return similarity
    
    
    # Function to download image from URL
    def download_image(url):
       response = requests.get(url, stream=True)
       return Image.open(BytesIO(response.content)).convert('RGB')
    
    
    # Function to visualize image pair with similarity score
    def visualize_similarity(img1_path, img2_path, title=None):
       # Load images
       if img1_path.startswith(('http://', 'https://')):
           img1 = download_image(img1_path)
       else:
           img1 = Image.open(img1_path).convert('RGB')
    
    
       if img2_path.startswith(('http://', 'https://')):
           img2 = download_image(img2_path)
       else:
           img2 = Image.open(img2_path).convert('RGB')
    
    
       # Compute similarity
       similarity = compute_similarity(img1, img2)
    
    
       # Create figure for visualization
       fig, axes = plt.subplots(1, 2, figsize=(12, 6))
    
    
       # Display images
       axes[0].imshow(np.array(img1))
       axes[0].set_title("Image 1")
       axes[0].axis("off")
    
    
       axes[1].imshow(np.array(img2))
       axes[1].set_title("Image 2")
       axes[1].axis("off")
    
    
       # Add similarity score as figure title
       fig_title = f"Similarity Score: {similarity:.4f}"
       if title:
           fig_title = f"{title}n{fig_title}"
       fig.suptitle(fig_title, fontsize=16)
    
    
       plt.tight_layout()
       plt.show()
    
    
       return similarity
    
    
    # Example: Use direct URLs instead of downloading files first
    # Sample sneaker images from Unsplash
    url1 = "https://images.unsplash.com/photo-1560769629-975ec94e6a86?w=500"  # Red sneaker
    url2 = "https://images.unsplash.com/photo-1600185365926-3a2ce3cdb9eb?w=500"  # White sneaker
    url3 = "https://images.unsplash.com/photo-1491553895911-0055eca6402d?w=500"  # Another sneaker
    
    
    # Visualize pairs with similarity scores
    print("Comparing Product 1 and Product 2:")
    similarity_1_2 = visualize_similarity(url1, url2, "Red Sneaker vs White Sneaker")
    
    
    print("nComparing Product 1 and Product 3:")
    similarity_1_3 = visualize_similarity(url1, url3, "Red Sneaker vs Another Sneaker")
    
    
    print("nComparing Product 2 and Product 3:")
    similarity_2_3 = visualize_similarity(url2, url3, "White Sneaker vs Another Sneaker")
    
    
    # Print summary of all similarities
    print("nSummary of Similarity Scores:")
    print(f"Similarity between product 1 and 2: {similarity_1_2:.4f}")
    print(f"Similarity between product 1 and 3: {similarity_1_3:.4f}")
    print(f"Similarity between product 2 and 3: {similarity_2_3:.4f}")
    Output

    3. Segment Anything Model (SAM): Advanced Image Segmentation

    SAM by Meta AI provides powerful zero-shot segmentation capabilities for various business applications.

    Business Applications:

    Automated image cataloging

    Precise product measurement in retail

    Medical image analysis

    Agricultural crop monitoring

    Content creation and editing

    Copy CodeCopiedUse a different Browser
    # Install required libraries for SAM
    !pip install git+https://github.com/facebookresearch/segment-anything.git
    
    
    import torch
    import numpy as np
    import matplotlib.pyplot as plt
    from segment_anything import sam_model_registry, SamPredictor
    import cv2
    from PIL import Image
    import requests
    
    
    # Download SAM checkpoint
    !wget -q https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
    
    
    # Load SAM model
    sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth")
    device = "cuda" if torch.cuda.is_available() else "cpu"
    sam.to(device)
    predictor = SamPredictor(sam)
    
    
    # Function to perform automatic segmentation
    def segment_image(image_path):
       # Load image
       image = cv2.imread(image_path)
       image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    
    
       # Set image for SAM
       predictor.set_image(image_rgb)
    
    
       # Generate automatic masks
       masks, scores, logits = predictor.predict(
           point_coords=None,
           point_labels=None,
           multimask_output=True,
           box=None
       )
    
    
       return image_rgb, masks, scores
    
    
    # Function to visualize segmentation results
    def visualize_segmentation(image, masks, scores, limit=5):
       plt.figure(figsize=(15, 10))
    
    
       # Display original image
       plt.subplot(1, limit+1, 1)
       plt.imshow(image)
       plt.title("Original Image")
       plt.axis('off')
    
    
       # Display top masks
       top_indices = np.argsort(scores)[-limit:][::-1]
       for i, idx in enumerate(top_indices):
           plt.subplot(1, limit+1, i+2)
           plt.imshow(image)
           plt.imshow(masks[idx], alpha=0.7, cmap='jet')
           plt.title(f"Mask {i+1}nScore: {scores[idx]:.3f}")
           plt.axis('off')
    
    
       plt.tight_layout()
       plt.show()
    
    
    # Example: Product segmentation for e-commerce
    !wget -q -O product_image.jpg "https://images.unsplash.com/photo-1525966222134-fcfa99b8ae77?w=800"
    
    
    image_rgb, masks, scores = segment_image("product_image.jpg")
    visualize_segmentation(image_rgb, masks, scores)
    
    
    # Business application: Calculate precise product measurements
    def calculate_object_dimensions(mask):
       # Find contours in the mask
       contours, _ = cv2.findContours((mask * 255).astype(np.uint8),
                                      cv2.RETR_EXTERNAL,
                                      cv2.CHAIN_APPROX_SIMPLE)
    
    
       if not contours:
           return None
    
    
       # Get the largest contour
       largest_contour = max(contours, key=cv2.contourArea)
    
    
       # Get bounding rectangle
       x, y, w, h = cv2.boundingRect(largest_contour)
    
    
       # Calculate aspect ratio
       aspect_ratio = w / h
    
    
       # Calculate area in pixels
       area_pixels = cv2.contourArea(largest_contour)
    
    
       return {
           'width': w,
           'height': h,
           'aspect_ratio': aspect_ratio,
           'area_pixels': area_pixels
       }
    
    
    # Apply to the highest scoring mask
    best_mask_idx = np.argmax(scores)
    dimensions = calculate_object_dimensions(masks[best_mask_idx])
    
    
    print("Product Dimensions:")
    print(f"Width: {dimensions['width']} pixels")
    print(f"Height: {dimensions['height']} pixels")
    print(f"Aspect Ratio: {dimensions['aspect_ratio']:.2f}")
    print(f"Area: {dimensions['area_pixels']} square pixels")
    Output

    4. BLIP-2: Vision-Language Model for Business Intelligence

    BLIP-2 provides advanced vision-language capabilities for multimodal business applications.

    Business Applications:

    • Automated product description generation
    • Image-based customer service automation
    • Visual content analysis for marketing
    • Social media content understanding
    Copy CodeCopiedUse a different Browser
    from transformers import Blip2Processor, Blip2ForConditionalGeneration
    import torch
    from PIL import Image
    import requests
    import matplotlib.pyplot as plt
    import numpy as np
    from io import BytesIO
    
    
    # Load BLIP-2 model
    processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
    model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
    
    
    if torch.cuda.is_available():
       model = model.to("cuda")
    
    
    # Function to download image from URL
    def download_image(url):
       response = requests.get(url, stream=True)
       return Image.open(BytesIO(response.content)).convert('RGB')
    
    
    # Function for image captioning
    def generate_caption(image_path):
       # Load image from path or URL
       if isinstance(image_path, str):
           if image_path.startswith(('http://', 'https://')):
               image = download_image(image_path)
           else:
               image = Image.open(image_path).convert('RGB')
       else:
           image = image_path
    
    
       inputs = processor(images=image, return_tensors="pt")
    
    
       if torch.cuda.is_available():
           inputs = {k: v.to("cuda") for k, v in inputs.items()}
    
    
       generated_ids = model.generate(**inputs, max_new_tokens=50)
       generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
    
    
       return generated_text
    
    
    # Function for visual question answering
    def visual_qa(image_path, question):
       # Load image from path or URL
       if isinstance(image_path, str):
           if image_path.startswith(('http://', 'https://')):
               image = download_image(image_path)
           else:
               image = Image.open(image_path).convert('RGB')
       else:
           image = image_path
    
    
       # FIX: Properly format the question for the model
       # BLIP-2 needs a specific prompt format for QA
       prompt = f"Question: {question} Answer:"
       inputs = processor(images=image, text=prompt, return_tensors="pt")
    
    
       if torch.cuda.is_available():
           inputs = {k: v.to("cuda") for k, v in inputs.items()}
    
    
       generated_ids = model.generate(
           **inputs,
           max_new_tokens=30,
           do_sample=False  # Use greedy decoding for more precise answers
       )
    
    
       answer = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
       # Remove the prompt part from the answer
       answer = answer.replace(prompt, "").strip()
    
    
       return answer
    
    
    # Function to visualize image with caption and QA
    def visualize_product_analysis(image_path, questions=None):
       # Load image
       if isinstance(image_path, str):
           if image_path.startswith(('http://', 'https://')):
               image = download_image(image_path)
           else:
               image = Image.open(image_path).convert('RGB')
       else:
           image = image_path
    
    
       # Generate caption
       caption = generate_caption(image)
    
    
       # Default questions if none provided
       if questions is None:
           questions = [
               "What color is this product?",
               "What material is this product made of?",
               "What is the target demographic for this product?",
               "What is a key feature of this product?"
           ]
    
    
       # Get answers
       answers = []
       for question in questions:
           answer = visual_qa(image, question)
           answers.append((question, answer))
    
    
       # Create visualization
       plt.figure(figsize=(12, 10))
    
    
       # Display image
       plt.subplot(2, 1, 1)
       plt.imshow(np.array(image))
       plt.title("Product Image", fontsize=14)
       plt.axis('off')
    
    
       # Display caption and Q&A
       plt.subplot(2, 1, 2)
       plt.axis('off')
    
    
       text_content = f"Generated Description: {caption}nn"
       text_content += "Product Analysis:n"
       for q, a in answers:
           text_content += f"Q: {q}nA: {a}nn"
    
    
       plt.text(0.01, 0.99, text_content, transform=plt.gca().transAxes,
                fontsize=12, verticalalignment='top', wrap=True)
    
    
       plt.tight_layout()
       plt.show()
    
    
       return caption, answers
    
    
    # Business application: Automated product listing
    def create_product_listing(image_path):
       # Load image
       if isinstance(image_path, str):
           if image_path.startswith(('http://', 'https://')):
               image = download_image(image_path)
           else:
               image = Image.open(image_path).convert('RGB')
       else:
           image = image_path
    
    
       # Get basic caption
       caption = generate_caption(image)
    
    
       # Extract product attributes with more specific prompting
       color = visual_qa(image, "What colors are visible in this product?")
       material = visual_qa(image, "What material does this product appear to be made of?")
       use_case = visual_qa(image, "What would be the main use case for this product?")
       unique_features = visual_qa(image, "What are any unique or notable features of this product?")
    
    
       # Create structured listing
       listing = {
           "title": caption,
           "attributes": {
               "color": color,
               "material": material,
               "primary_use": use_case,
               "unique_features": unique_features
           }
       }
    
    
       # Visualize the listing
       plt.figure(figsize=(14, 10))
    
    
       # Display image
       plt.subplot(1, 2, 1)
       plt.imshow(np.array(image))
       plt.title("Product Image", fontsize=14)
       plt.axis('off')
    
    
       # Display listing details
       plt.subplot(1, 2, 2)
       plt.axis('off')
    
    
       listing_text = f"PRODUCT LISTINGnn"
       listing_text += f"Title: {listing['title']}nn"
       listing_text += "Product Attributes:n"
       for attr, value in listing['attributes'].items():
           listing_text += f"{attr.replace('_', ' ').title()}: {value}n"
    
    
       plt.text(0.01, 0.99, listing_text, transform=plt.gca().transAxes,
                fontsize=12, verticalalignment='top')
    
    
       plt.tight_layout()
       plt.show()
    
    
       return listing
    
    
    # Function for marketing content analysis
    def analyze_marketing_content(image_path):
       # Load image
       if isinstance(image_path, str):
           if image_path.startswith(('http://', 'https://')):
               image = download_image(image_path)
           else:
               image = Image.open(image_path).convert('RGB')
       else:
           image = image_path
    
    
       # Marketing-specific questions
       marketing_questions = [
           "What emotions does this image evoke?",
           "What brand values are communicated in this image?",
           "What target audience would this image appeal to?",
           "What call to action would pair well with this image?",
           "What marketing channel would this image be most effective on?"
       ]
    
    
       # Get answers
       marketing_insights = {}
       for question in marketing_questions:
           answer = visual_qa(image, question)
           key = question.split("?")[0].strip().lower().replace(" ", "_")
           marketing_insights[key] = answer
    
    
       # Visualize the analysis
       plt.figure(figsize=(14, 10))
    
    
       # Display image
       plt.subplot(1, 2, 1)
       plt.imshow(np.array(image))
       plt.title("Marketing Visual", fontsize=14)
       plt.axis('off')
    
    
       # Display marketing insights
       plt.subplot(1, 2, 2)
       plt.axis('off')
    
    
       insights_text = "MARKETING CONTENT ANALYSISnn"
       for question, key in zip(marketing_questions, marketing_insights.keys()):
           insights_text += f"{question}n{marketing_insights[key]}nn"
    
    
       plt.text(0.01, 0.99, insights_text, transform=plt.gca().transAxes,
                fontsize=12, verticalalignment='top')
    
    
       plt.tight_layout()
       plt.show()
    
    
       return marketing_insights
    
    
    # Function for social media understanding
    def analyze_social_media_content(image_path):
       # Load image
       if isinstance(image_path, str):
           if image_path.startswith(('http://', 'https://')):
               image = download_image(image_path)
           else:
               image = Image.open(image_path).convert('RGB')
       else:
           image = image_path
    
    
       # Generate caption
       caption = generate_caption(image)
    
    
       # Social media specific analysis
       engagement_potential = visual_qa(image, "How likely is this image to engage viewers on social media?")
       suggested_hashtags = visual_qa(image, "What hashtags would be appropriate for this image on social media?")
       platform_fit = visual_qa(image, "Which social media platform would this image perform best on?")
       content_type = visual_qa(image, "What type of social media post would this image be suitable for?")
    
    
       # Create analysis dict
       social_analysis = {
           "caption": caption,
           "engagement_potential": engagement_potential,
           "suggested_hashtags": suggested_hashtags,
           "platform_fit": platform_fit,
           "content_type": content_type
       }
    
    
       # Visualize the analysis
       plt.figure(figsize=(14, 10))
    
    
       # Display image
       plt.subplot(1, 2, 1)
       plt.imshow(np.array(image))
       plt.title("Social Media Content", fontsize=14)
       plt.axis('off')
    
    
       # Display social media insights
       plt.subplot(1, 2, 2)
       plt.axis('off')
    
    
       insights_text = "SOCIAL MEDIA CONTENT ANALYSISnn"
       insights_text += f"Caption: {social_analysis['caption']}nn"
       insights_text += f"Engagement Potential: {social_analysis['engagement_potential']}nn"
       insights_text += f"Suggested Hashtags: {social_analysis['suggested_hashtags']}nn"
       insights_text += f"Best Platform: {social_analysis['platform_fit']}nn"
       insights_text += f"Content Type: {social_analysis['content_type']}n"
    
    
       plt.text(0.01, 0.99, insights_text, transform=plt.gca().transAxes,
                fontsize=12, verticalalignment='top')
    
    
       plt.tight_layout()
       plt.show()
    
    
       return social_analysis
    
    
    # Example usage
    if __name__ == "__main__":
       # Example: E-commerce product analysis
       product_url = "https://images.unsplash.com/photo-1598033129183-c4f50c736f10?w=800"
    
    
       print("1. Basic Product Analysis")
       caption, qa_results = visualize_product_analysis(product_url)
    
    
       print("n2. Creating Automated Product Listing")
       product_listing = create_product_listing(product_url)
    
    
       print("n3. Marketing Content Analysis")
       marketing_url = "https://images.unsplash.com/photo-1581252584837-9f0b1d3bf82c?ixlib=rb-4.0.3&q=80"
       marketing_insights = analyze_marketing_content(marketing_url)
    
    
       print("n4. Social Media Content Analysis")
       social_url = "https://images.unsplash.com/photo-1534442072653-dbbf80c5e1ae?ixlib=rb-4.0.3&q=80"
       social_analysis = analyze_social_media_content(social_url)
    Output 1
    Output 2

    Conclusion

    This tutorial provides hands-on implementation guidance for deploying four key computer vision foundation models into business applications: CLIP (zero-shot classification), DINO v2 (self-supervised learning), SAM (image segmentation), and BLIP-2 (vision-language tasks).Future experimentation could explore model ensemble techniques, fine-tuning on domain-specific datasets, edge deployment optimization, and integration with business intelligence platforms to maximize ROI on vision AI investments.


    Check out the Notebook here. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit. For Promotion and Partnerships, please talk us.

    🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

    The post Vision Foundation Models: Implementation and Business Applications appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleIBM AI Releases Granite 4.0 Tiny Preview: A Compact Open-Language Model Optimized for Long-Context and Instruction Tasks
    Next Article Oversight at Scale Isn’t Guaranteed: MIT Researchers Quantify the Fragility of Nested AI Supervision with New Elo-Based Framework

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    August 3, 2025
    Machine Learning

    Google AI Releases MLE-STAR: A State-of-the-Art Machine Learning Engineering Agent Capable of Automating Various AI Tasks

    August 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-3859 – Focus URL Truncation Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-52832 – “WPO-HR NGG Smart Image Search SQL Injection”

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-2422 – CVE-2021-12345: Apache Struts Deserialization Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Here’s How to Generate Images Using ChatGPT in WhatsApp

    Operating Systems

    Highlights

    CVE-2025-53498 – Wikimedia Foundation Mediawiki AbuseFilter Extension Data Leakage Vulnerability

    July 7, 2025

    CVE ID : CVE-2025-53498

    Published : July 7, 2025, 7:15 p.m. | 3 hours, 29 minutes ago

    Description : : Insufficient Logging vulnerability in Wikimedia Foundation Mediawiki – AbuseFilter Extension allows Data Leakage Attacks.This issue affects Mediawiki – AbuseFilter Extension: from 1.39.X before 1.39.13, from 1.42.X before 1.42.7, from 1.43.X before 1.43.2.

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Xbox Insiders can further customize their console Home screen, pinning games, changing tile sizes, and more

    May 17, 2025

    CodeSOD: What a CAD

    July 31, 2025

    Meta resumes AI training using EU user data

    April 15, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.