Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      How To Prevent WordPress SQL Injection Attacks

      June 13, 2025

      This week in AI dev tools: Apple’s Foundations Model framework, Mistral’s first reasoning model, and more (June 13, 2025)

      June 13, 2025

      Open Talent platforms emerging to match skilled workers to needs, study finds

      June 13, 2025

      Java never goes out of style: Celebrating 30 years of the language

      June 12, 2025

      OneDrive for Mac will soon give you more flexible storage options

      June 13, 2025

      From The Editor’s Desk — new Windows Central community features, we’d like to hear from you!

      June 13, 2025

      New code strings attached to Xbox Game Pass suggests a price increase may be imminent

      June 13, 2025

      This could be the versatile laptop accessory I’ve been waiting for — Here’s why it stands out from other portable monitors

      June 13, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Worker Threads in Node.js: A Complete Guide for Multithreading in JavaScript

      June 13, 2025
      Recent

      Worker Threads in Node.js: A Complete Guide for Multithreading in JavaScript

      June 13, 2025

      Everybody’s gone lintin’

      June 13, 2025

      QAQ-QQ-AI-QUEST

      June 13, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      OneDrive for Mac will soon give you more flexible storage options

      June 13, 2025
      Recent

      OneDrive for Mac will soon give you more flexible storage options

      June 13, 2025

      From The Editor’s Desk — new Windows Central community features, we’d like to hear from you!

      June 13, 2025

      New code strings attached to Xbox Game Pass suggests a price increase may be imminent

      June 13, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Artificial Intelligence»Novel method detects microbial contamination in cell cultures

    Novel method detects microbial contamination in cell cultures

    April 25, 2025
    Researchers from the Critical Analytics for Manufacturing Personalized-Medicine (CAMP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, in collaboration with MIT, A*STAR Skin Research Labs, and the National University of Singapore, have developed a novel method that can quickly and automatically detect and monitor microbial contamination in cell therapy products (CTPs) early on during the manufacturing process. By measuring ultraviolet light absorbance of cell culture fluids and using machine learning to recognize light absorption patterns associated with microbial contamination, this preliminary testing method aims to reduce the overall time taken for sterility testing and, subsequently, the time patients need to wait for CTP doses. This is especially crucial where timely administration of treatments can be life-saving for terminally ill patients.
     
    Cell therapy represents a promising new frontier in medicine, especially in treating diseases such as cancers, inflammatory diseases, and chronic degenerative disorders by manipulating or replacing cells to restore function or fight disease. However, a major challenge in CTP manufacturing is quickly and effectively ensuring that cells are free from contamination before being administered to patients.
     
    Existing sterility testing methods, based on microbiological methods,  are labor-intensive and require up to 14 days to detect contamination, which could adversely affect critically ill patients who need immediate treatment. While advanced techniques such as rapid microbiological methods (RMMs) can reduce the testing period to seven days, they still require complex processes such as cell extraction and growth enrichment mediums, and they are highly dependent on skilled workers for procedures such as sample extraction, measurement, and analysis. This creates an urgent need for new methods that offer quicker outcomes without compromising the quality of CTPs, meet the patient-use timeline, and use a simple workflow that does not require additional preparation.
     
    In a paper titled “Machine learning aided UV absorbance spectroscopy for microbial contamination in cell therapy products,” published in the journal Scientific Reports, SMART CAMP researchers described how they combined UV absorbance spectroscopy to develop a machine learning-aided method for label-free, noninvasive, and real-time detection of cell contamination during the early stages of manufacturing.
     
    This method offers significant advantages over both traditional sterility tests and RMMs, as it eliminates the need for staining of cells to identify labelled organisms, avoids the invasive process of cell extraction, and delivers results in under half-an-hour. It provides an intuitive, rapid “yes/no” contamination assessment, facilitating automation of cell culture sampling with a simple workflow. Furthermore, the developed method does not require specialized equipment, resulting in lower costs.
     
    “This rapid, label-free method is designed to be a preliminary step in the CTP manufacturing process as a form of continuous safety testing, which allows users to detect contamination early and implement timely corrective actions, including the use of RMMs only when possible contamination is detected. This approach saves costs, optimizes resource allocation, and ultimately accelerates the overall manufacturing timeline,” says Shruthi Pandi Chelvam, senior research engineer at SMART CAMP and first author of the paper.
     
    “Traditionally, cell therapy manufacturing is labor-intensive and subject to operator variability. By introducing automation and machine learning, we hope to streamline cell therapy manufacturing and reduce the risk of contamination. Specifically, our method supports automated cell culture sampling at designated intervals to check for contamination, which reduces manual tasks such as sample extraction, measurement, and analysis. This enables cell cultures to be monitored continuously and contamination to be detected at early stages,” says Rajeev Ram, the Clarence J. LeBel Professor in Electrical Engineering and Computer Science at MIT, a principal investigator at SMART CAMP, and the corresponding author of the paper.
     
    Moving forward, future research will focus on broadening the application of the method to encompass a wider range of microbial contaminants, specifically those representative of current good manufacturing practices environments and previously identified CTP contaminants. Additionally, the model’s robustness can be tested across more cell types apart from MSCs. Beyond cell therapy manufacturing, this method can also be applied to the food and beverage industry as part of microbial quality control testing to ensure food products meet safety standards.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleWindows 11 KB5055627 24H2 fixes BSODs, direct download .msu
    Next Article Artificial intelligence enhances air mobility planning

    Related Posts

    Artificial Intelligence

    Last Week in AI #302 – QwQ 32B, OpenAI injunction refused, Alexa Plus

    June 13, 2025
    Artificial Intelligence

    LWiAI Podcast #202 – Qwen-32B, Anthropic’s $3.5 billion, LLM Cognitive Behaviors

    June 13, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Satya Nadella says Microsoft’s AI model performance is “doubling every 6 months”, despite the estranged OpenAI partnership

    News & Updates

    CVE-2025-43007 – SAP Service Parts Management Privilege Escalation Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    A Minecraft Movie has set a record in the UK that will take some beating — it’s all thanks to “Steve’s Lava Chicken”

    News & Updates

    CVE-2025-31250 – Apple macOS Sequoia Information Disclosure Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    shotman is a screenshot GUI for Wayland

    April 4, 2025

    shotman is billed as uncompromising screenshot GUI for Wayland compositors. It is designed for interactive…

    I expected this $20 Amazon Basics multitool to be junk, but it proved me wrong

    April 7, 2025

    CVE-2025-3670 – WordPress KiwiChat NextClient Stored Cross-Site Scripting

    May 2, 2025

    UX And Design Files Organization Template

    April 28, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.